6.14. Aggregate Functions
Aggregate functions operate on a set of values to compute a single result.
Except for count()
, count_if()
, max_by()
, min_by()
andapprox_distinct()
, all of these aggregate functions ignore null valuesand return null for no input rows or when all values are null. For example,sum()
returns null rather than zero and avg()
does not include nullvalues in the count. The coalesce
function can be used to convert null intozero.
Some aggregate functions such as array_agg()
produce different resultsdepending on the order of input values. This ordering can be specified by writingan ORDER BY Clause within the aggregate function:
- array_agg(x ORDER BY y DESC)
- array_agg(x ORDER BY x, y, z)
General Aggregate Functions
arbitrary
(x) → [same as input]
Returns an arbitrary non-null value ofx
, if one exists.
arrayagg
(_x) → array<[same as input]>
Returns an array created from the inputx
elements.
avg
(x) → double
Returns the average (arithmetic mean) of all input values.
avg
(time interval type) → time interval type
Returns the average interval length of all input values.
booland
(_boolean) → boolean
ReturnsTRUE
if every input value isTRUE
, otherwiseFALSE
.
boolor
(_boolean) → boolean
ReturnsTRUE
if any input value isTRUE
, otherwiseFALSE
.
checksum
(x) → varbinary
Returns an order-insensitive checksum of the given values.
count
(*) → bigint
Returns the number of input rows.
count
(x) → bigint
Returns the number of non-null input values.
countif
(_x) → bigint
Returns the number ofTRUE
input values.This function is equivalent tocount(CASE WHEN x THEN 1 END)
.
every
(boolean) → boolean
This is an alias forbool_and()
.
geometricmean
(_x) → double
Returns the geometric mean of all input values.
maxby
(_x, y) → [same as x]
Returns the value ofx
associated with the maximum value ofy
over all input values.
maxby
(_x, y, n) → array<[same as x]>
Returnsn
values ofx
associated with then
largest of all input values ofy
in descending order ofy
.
minby
(_x, y) → [same as x]
Returns the value ofx
associated with the minimum value ofy
over all input values.
minby
(_x, y, n) → array<[same as x]>
Returnsn
values ofx
associated with then
smallest of all input values ofy
in ascending order ofy
.
max
(x) → [same as input]
Returns the maximum value of all input values.
max
(x, n) → array<[same as x]>
Returnsn
largest values of all input values ofx
.
min
(x) → [same as input]
Returns the minimum value of all input values.
min
(x, n) → array<[same as x]>
Returnsn
smallest values of all input values ofx
.
sum
(x) → [same as input]
Returns the sum of all input values.
Bitwise Aggregate Functions
bitwiseand_agg
(_x) → bigint
Returns the bitwise AND of all input values in 2’s complement representation.
bitwiseor_agg
(_x) → bigint
Returns the bitwise OR of all input values in 2’s complement representation.
Map Aggregate Functions
histogram
(x) → map<K,bigint>
Returns a map containing the count of the number of times each input value occurs.
mapagg
(_key, value) → map<K,V>
Returns a map created from the inputkey
/value
pairs.
mapunion
(_x<K, V>) → map<K,V>
Returns the union of all the input maps. If a key is found in multipleinput maps, that key’s value in the resulting map comes from an arbitrary input map.
multimapagg
(_key, value) → map<K,array<V>>
Returns a multimap created from the inputkey
/value
pairs.Each key can be associated with multiple values.
Approximate Aggregate Functions
approxdistinct
(_x) → bigint
Returns the approximate number of distinct input values.This function provides an approximation ofcount(DISTINCT x)
.Zero is returned if all input values are null.
This function should produce a standard error of 2.3%, which is thestandard deviation of the (approximately normal) error distribution overall possible sets. It does not guarantee an upper bound on the error forany specific input set.
approxdistinct
(_x, e) → bigint
Returns the approximate number of distinct input values.This function provides an approximation ofcount(DISTINCT x)
.Zero is returned if all input values are null.
This function should produce a standard error of no more thane
, whichis the standard deviation of the (approximately normal) error distributionover all possible sets. It does not guarantee an upper bound on the errorfor any specific input set. The current implementation of this functionrequires thate
be in the range of[0.0040625, 0.26000]
.
approxpercentile
(_x, percentage) → [same as x]
Returns the approximate percentile for all input values ofx
at thegivenpercentage
. The value ofpercentage
must be between zero andone and must be constant for all input rows.
approxpercentile
(_x, percentages) → array<[same as x]>
Returns the approximate percentile for all input values ofx
at each ofthe specified percentages. Each element of thepercentages
array must bebetween zero and one, and the array must be constant for all input rows.
approxpercentile
(_x, w, percentage) → [same as x]
Returns the approximate weighed percentile for all input values ofx
using the per-item weightw
at the percentagep
. The weight must bean integer value of at least one. It is effectively a replication count forthe valuex
in the percentile set. The value ofp
must be betweenzero and one and must be constant for all input rows.
approxpercentile
(_x, w, percentage, accuracy) → [same as x]
Returns the approximate weighed percentile for all input values ofx
using the per-item weightw
at the percentagep
, with a maximum rankerror ofaccuracy
. The weight must be an integer value of at least one.It is effectively a replication count for the valuex
in the percentileset. The value ofp
must be between zero and one and must be constantfor all input rows.accuracy
must be a value greater than zero and lessthan one, and it must be constant for all input rows.
approxpercentile
(_x, w, percentages) → array<[same as x]>
Returns the approximate weighed percentile for all input values ofx
using the per-item weightw
at each of the given percentages specifiedin the array. The weight must be an integer value of at least one. It iseffectively a replication count for the valuex
in the percentile set.Each element of the array must be between zero and one, and the array mustbe constant for all input rows.
numerichistogram
(_buckets, value, weight) → map<double, double>
Computes an approximate histogram with up tobuckets
number of bucketsfor allvalue
s with a per-item weight ofweight
. The algorithmis based loosely on:- Yael Ben-Haim and Elad Tom-Tov, "A streaming parallel decision tree algorithm",
J. Machine Learning Research 11 (2010), pp. 849—872.
buckets
must be abigint
.value
andweight
must be numeric.- Yael Ben-Haim and Elad Tom-Tov, "A streaming parallel decision tree algorithm",
numerichistogram
(_buckets, value) → map<double, double>
Computes an approximate histogram with up tobuckets
number of bucketsfor allvalue
s. This function is equivalent to the variant ofnumeric_histogram()
that takes aweight
, with a per-item weight of1
.
Statistical Aggregate Functions
corr
(y, x) → double
Returns correlation coefficient of input values.
covarpop
(_y, x) → double
Returns the population covariance of input values.
covarsamp
(_y, x) → double
Returns the sample covariance of input values.
kurtosis
(x) → double
Returns the excess kurtosis of all input values. Unbiased estimate usingthe following expression:- kurtosis(x) = n(n+1)/((n-1)(n-2)(n-3))sum[(xi-mean)^4]/stddev(x)^4-3(n-1)^2/((n-2)(n-3))
- kurtosis(x) = n(n+1)/((n-1)(n-2)(n-3))sum[(xi-mean)^4]/stddev(x)^4-3(n-1)^2/((n-2)(n-3))
regr_intercept
(_y, x) → double
Returns linear regression intercept of input values.y
is the dependentvalue.x
is the independent value.
regrslope
(_y, x) → double
Returns linear regression slope of input values.y
is the dependentvalue.x
is the independent value.
skewness
(x) → double
Returns the skewness of all input values.
stddev
(x) → double
This is an alias forstddev_samp()
.
stddevpop
(_x) → double
Returns the population standard deviation of all input values.
stddevsamp
(_x) → double
Returns the sample standard deviation of all input values.
variance
(x) → double
This is an alias forvar_samp()
.
varpop
(_x) → double
Returns the population variance of all input values.
varsamp
(_x) → double
Returns the sample variance of all input values.
原文: https://prestodb.io/docs/current/functions/aggregate.html