Normal

  • class paddle.fluid.layers.Normal(loc, scale)[源代码]

正态分布

数学公式:

Normal - 图1

上面的数学公式中:

Normal - 图2 : 平均值。 Normal - 图3 : 标准差。 Normal - 图4 : 正态分布常量。

  • 参数:
    • loc (float|list|numpy.ndarray|Variable) - 正态分布平均值。数据类型为float32。
    • scale (float|list|numpy.ndarray|Variable) - 正态分布标准差。数据类型为float32。

代码示例

  1. import numpy as np
  2. from paddle.fluid import layers
  3. from paddle.fluid.layers import Normal
  4.  
  5. # 定义参数为float的正态分布。
  6. dist = Normal(loc=0., scale=3.)
  7. # 定义一组有两个数的正态分布。
  8. # 第一组为均值1,标准差11,第二组为均值2,标准差22。
  9. dist = Normal(loc=[1., 2.], scale=[11., 22.])
  10. # 得到3个样本, 返回一个 3 x 2 张量。
  11. dist.sample([3])
  12.  
  13. # 通过广播的方式,定义一个两个参数的正态分布。
  14. # 均值都是1,标准差不同。
  15. dist = Normal(loc=1., scale=[11., 22.])
  16.  
  17. # 一个完整的例子
  18. value_npdata = np.array([0.8], dtype="float32")
  19. value_tensor = layers.create_tensor(dtype="float32")
  20. layers.assign(value_npdata, value_tensor)
  21.  
  22. normal_a = Normal([0.], [1.])
  23. normal_b = Normal([0.5], [2.])
  24.  
  25. sample = normal_a.sample([2])
  26. # 一个由定义好的正太分布随机生成的张量,维度为: [2, 1]
  27. entropy = normal_a.entropy()
  28. # [1.4189385] with shape: [1]
  29. lp = normal_a.log_prob(value_tensor)
  30. # [-1.2389386] with shape: [1]
  31. kl = normal_a.kl_divergence(normal_b)
  32. # [0.34939718] with shape: [1]
  • sample(shape, seed=0)

生成指定维度的样本

  • 参数:
    • shape (list) - 1维列表,指定生成样本的维度。数据类型为int32。
    • seed (int) - 长整型数。

返回:预先设计好维度的张量, 数据类型为float32

返回类型:Variable

  • entropy()

信息熵

返回:正态分布的信息熵, 数据类型为float32

返回类型:Variable

  • log_prob(value)

对数概率密度函数

  • 参数:
    • value (Variable) - 输入张量。数据类型为float32或float64。

返回:对数概率, 数据类型与value相同

返回类型:Variable

  • kl_divergence(other)

两个正态分布之间的KL散度。

  • 参数:
    • other (Normal) - Normal的实例。

返回:两个正态分布之间的KL散度, 数据类型为float32

返回类型:Variable