Estimating the number of pods your OKD nodes can hold
- Understanding the OKD cluster capacity tool
- Running the cluster capacity tool on the command line
- Running the cluster capacity tool as a job inside a pod
As a cluster administrator, you can use the cluster capacity tool to view the number of pods that can be scheduled to increase the current resources before they become exhausted, and to ensure any future pods can be scheduled. This capacity comes from an individual node host in a cluster, and includes CPU, memory, disk space, and others.
Understanding the OKD cluster capacity tool
The cluster capacity tool simulates a sequence of scheduling decisions to determine how many instances of an input pod can be scheduled on the cluster before it is exhausted of resources to provide a more accurate estimation.
The remaining allocatable capacity is a rough estimation, because it does not count all of the resources being distributed among nodes. It analyzes only the remaining resources and estimates the available capacity that is still consumable in terms of a number of instances of a pod with given requirements that can be scheduled in a cluster. Also, pods might only have scheduling support on particular sets of nodes based on its selection and affinity criteria. As a result, the estimation of which remaining pods a cluster can schedule can be difficult. |
You can run the cluster capacity analysis tool as a stand-alone utility from the command line, or as a job in a pod inside an OKD cluster. Running it as job inside of a pod enables you to run it multiple times without intervention.
Running the cluster capacity tool on the command line
You can run the OKD cluster capacity tool from the command line to estimate the number of pods that can be scheduled onto your cluster.
Prerequisites
Run the OpenShift Cluster Capacity Tool, which is available as a container image from the Red Hat Ecosystem Catalog.
Create a sample
Pod
spec file, which the tool uses for estimating resource usage. Thepodspec
specifies its resource requirements aslimits
orrequests
. The cluster capacity tool takes the pod’s resource requirements into account for its estimation analysis.An example of the
Pod
spec input is:apiVersion: v1
kind: Pod
metadata:
name: small-pod
labels:
app: guestbook
tier: frontend
spec:
containers:
- name: php-redis
image: gcr.io/google-samples/gb-frontend:v4
imagePullPolicy: Always
resources:
limits:
cpu: 150m
memory: 100Mi
requests:
cpu: 150m
memory: 100Mi
Procedure
To use the cluster capacity tool on the command line:
From the terminal, log in to the Red Hat Registry:
$ podman login registry.redhat.io
Pull the cluster capacity tool image:
$ podman pull registry.redhat.io/openshift4/ose-cluster-capacity
Run the cluster capacity tool:
$ podman run -v $HOME/.kube:/kube:Z -v $(pwd):/cc:Z ose-cluster-capacity \
/bin/cluster-capacity --kubeconfig /kube/config --podspec /cc/pod-spec.yaml \
--verbose (1)
1 You can also add the —verbose
option to output a detailed description of how many pods can be scheduled on each node in the cluster.Example output
small-pod pod requirements:
- CPU: 150m
- Memory: 100Mi
The cluster can schedule 88 instance(s) of the pod small-pod.
Termination reason: Unschedulable: 0/5 nodes are available: 2 Insufficient cpu,
3 node(s) had taint {node-role.kubernetes.io/master: }, that the pod didn't
tolerate.
Pod distribution among nodes:
small-pod
- 192.168.124.214: 45 instance(s)
- 192.168.124.120: 43 instance(s)
In the above example, the number of estimated pods that can be scheduled onto the cluster is 88.
Running the cluster capacity tool as a job inside a pod
Running the cluster capacity tool as a job inside of a pod has the advantage of being able to be run multiple times without needing user intervention. Running the cluster capacity tool as a job involves using a ConfigMap
object.
Prerequisites
Download and install the cluster capacity tool.
Procedure
To run the cluster capacity tool:
Create the cluster role:
$ cat << EOF| oc create -f -
Example output
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: cluster-capacity-role
rules:
- apiGroups: [""]
resources: ["pods", "nodes", "persistentvolumeclaims", "persistentvolumes", "services", "replicationcontrollers"]
verbs: ["get", "watch", "list"]
- apiGroups: ["apps"]
resources: ["replicasets", "statefulsets"]
verbs: ["get", "watch", "list"]
- apiGroups: ["policy"]
resources: ["poddisruptionbudgets"]
verbs: ["get", "watch", "list"]
- apiGroups: ["storage.k8s.io"]
resources: ["storageclasses"]
verbs: ["get", "watch", "list"]
EOF
Create the service account:
$ oc create sa cluster-capacity-sa
Add the role to the service account:
$ oc adm policy add-cluster-role-to-user cluster-capacity-role \
system:serviceaccount:default:cluster-capacity-sa
Define and create the
Pod
spec:apiVersion: v1
kind: Pod
metadata:
name: small-pod
labels:
app: guestbook
tier: frontend
spec:
containers:
- name: php-redis
image: gcr.io/google-samples/gb-frontend:v4
imagePullPolicy: Always
resources:
limits:
cpu: 150m
memory: 100Mi
requests:
cpu: 150m
memory: 100Mi
The cluster capacity analysis is mounted in a volume using a
ConfigMap
object namedcluster-capacity-configmap
to mount input pod spec filepod.yaml
into a volumetest-volume
at the path/test-pod
.If you haven’t created a
ConfigMap
object, create one before creating the job:$ oc create configmap cluster-capacity-configmap \
--from-file=pod.yaml=pod.yaml
Create the job using the below example of a job specification file:
apiVersion: batch/v1
kind: Job
metadata:
name: cluster-capacity-job
spec:
parallelism: 1
completions: 1
template:
metadata:
name: cluster-capacity-pod
spec:
containers:
- name: cluster-capacity
image: openshift/origin-cluster-capacity
imagePullPolicy: "Always"
volumeMounts:
- mountPath: /test-pod
name: test-volume
env:
- name: CC_INCLUSTER (1)
value: "true"
command:
- "/bin/sh"
- "-ec"
- |
/bin/cluster-capacity --podspec=/test-pod/pod.yaml --verbose
restartPolicy: "Never"
serviceAccountName: cluster-capacity-sa
volumes:
- name: test-volume
configMap:
name: cluster-capacity-configmap
1 A required environment variable letting the cluster capacity tool know that it is running inside a cluster as a pod.
Thepod.yaml
key of theConfigMap
object is the same as thePod
spec file name, though it is not required. By doing this, the input pod spec file can be accessed inside the pod as/test-pod/pod.yaml
.Run the cluster capacity image as a job in a pod:
$ oc create -f cluster-capacity-job.yaml
Check the job logs to find the number of pods that can be scheduled in the cluster:
$ oc logs jobs/cluster-capacity-job
Example output
small-pod pod requirements:
- CPU: 150m
- Memory: 100Mi
The cluster can schedule 52 instance(s) of the pod small-pod.
Termination reason: Unschedulable: No nodes are available that match all of the
following predicates:: Insufficient cpu (2).
Pod distribution among nodes:
small-pod
- 192.168.124.214: 26 instance(s)
- 192.168.124.120: 26 instance(s)