- Installing a cluster on OpenStack with Kuryr
- Prerequisites
- About Kuryr SDN
- Resource guidelines for installing OKD on RHOSP with Kuryr
- Enabling Swift on RHOSP
- Verifying external network access
- Defining parameters for the installation program
- Setting cloud provider options
- Obtaining the installation program
- Creating the installation configuration file
- Installation configuration parameters
- Required configuration parameters
- Network configuration parameters
- Optional configuration parameters
- Additional Red Hat OpenStack Platform (RHOSP) configuration parameters
- Optional RHOSP configuration parameters
- Custom subnets in RHOSP deployments
- Sample customized
install-config.yaml
file for RHOSP with Kuryr - Cluster deployment on RHOSP provider networks
- Kuryr ports pools
- Adjusting Kuryr ports pools during installation
- Setting compute machine affinity
- Generating a key pair for cluster node SSH access
- Enabling access to the environment
- Deploying the cluster
- Verifying cluster status
- Logging in to the cluster by using the CLI
- Next steps
Installing a cluster on OpenStack with Kuryr
- Prerequisites
- About Kuryr SDN
- Resource guidelines for installing OKD on RHOSP with Kuryr
- Enabling Swift on RHOSP
- Verifying external network access
- Defining parameters for the installation program
- Setting cloud provider options
- Obtaining the installation program
- Creating the installation configuration file
- Installation configuration parameters
- Required configuration parameters
- Network configuration parameters
- Optional configuration parameters
- Additional Red Hat OpenStack Platform (RHOSP) configuration parameters
- Optional RHOSP configuration parameters
- Custom subnets in RHOSP deployments
- Sample customized install-config.yaml file for RHOSP with Kuryr
- Cluster deployment on RHOSP provider networks
- Kuryr ports pools
- Adjusting Kuryr ports pools during installation
- Setting compute machine affinity
- Generating a key pair for cluster node SSH access
- Enabling access to the environment
- Deploying the cluster
- Verifying cluster status
- Logging in to the cluster by using the CLI
- Next steps
In OKD version 4.9, you can install a customized cluster on Red Hat OpenStack Platform (RHOSP) that uses Kuryr SDN. To customize the installation, modify parameters in the install-config.yaml
before you install the cluster.
Prerequisites
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
You verified that OKD 4.9 is compatible with your RHOSP version by using the Supported platforms for OpenShift clusters section. You can also compare platform support across different versions by viewing the OKD on RHOSP support matrix.
You have a storage service installed in RHOSP, such as block storage (Cinder) or object storage (Swift). Object storage is the recommended storage technology for OKD registry cluster deployment. For more information, see Optimizing storage.
About Kuryr SDN
Kuryr is a container network interface (CNI) plug-in solution that uses the Neutron and Octavia Red Hat OpenStack Platform (RHOSP) services to provide networking for pods and Services.
Kuryr and OKD integration is primarily designed for OKD clusters running on RHOSP VMs. Kuryr improves the network performance by plugging OKD pods into RHOSP SDN. In addition, it provides interconnectivity between pods and RHOSP virtual instances.
Kuryr components are installed as pods in OKD using the openshift-kuryr
namespace:
kuryr-controller
- a single service instance installed on amaster
node. This is modeled in OKD as aDeployment
object.kuryr-cni
- a container installing and configuring Kuryr as a CNI driver on each OKD node. This is modeled in OKD as aDaemonSet
object.
The Kuryr controller watches the OKD API server for pod, service, and namespace create, update, and delete events. It maps the OKD API calls to corresponding objects in Neutron and Octavia. This means that every network solution that implements the Neutron trunk port functionality can be used to back OKD via Kuryr. This includes open source solutions such as Open vSwitch (OVS) and Open Virtual Network (OVN) as well as Neutron-compatible commercial SDNs.
Kuryr is recommended for OKD deployments on encapsulated RHOSP tenant networks to avoid double encapsulation, such as running an encapsulated OKD SDN over an RHOSP network.
If you use provider networks or tenant VLANs, you do not need to use Kuryr to avoid double encapsulation. The performance benefit is negligible. Depending on your configuration, though, using Kuryr to avoid having two overlays might still be beneficial.
Kuryr is not recommended in deployments where all of the following criteria are true:
The RHOSP version is less than 16.
The deployment uses UDP services, or a large number of TCP services on few hypervisors.
or
The
ovn-octavia
Octavia driver is disabled.The deployment uses a large number of TCP services on few hypervisors.
Resource guidelines for installing OKD on RHOSP with Kuryr
When using Kuryr SDN, the pods, services, namespaces, and network policies are using resources from the RHOSP quota; this increases the minimum requirements. Kuryr also has some additional requirements on top of what a default install requires.
Use the following quota to satisfy a default cluster’s minimum requirements:
Resource | Value |
---|---|
Floating IP addresses | 3 - plus the expected number of Services of LoadBalancer type |
Ports | 1500 - 1 needed per Pod |
Routers | 1 |
Subnets | 250 - 1 needed per Namespace/Project |
Networks | 250 - 1 needed per Namespace/Project |
RAM | 112 GB |
vCPUs | 28 |
Volume storage | 275 GB |
Instances | 7 |
Security groups | 250 - 1 needed per Service and per NetworkPolicy |
Security group rules | 1000 |
Load balancers | 100 - 1 needed per Service |
Load balancer listeners | 500 - 1 needed per Service-exposed port |
Load balancer pools | 500 - 1 needed per Service-exposed port |
A cluster might function with fewer than recommended resources, but its performance is not guaranteed.
If RHOSP object storage (Swift) is available and operated by a user account with the |
If you are using Red Hat OpenStack Platform (RHOSP) version 16 with the Amphora driver rather than the OVN Octavia driver, security groups are associated with service accounts instead of user projects. |
Take the following notes into consideration when setting resources:
The number of ports that are required is larger than the number of pods. Kuryr uses ports pools to have pre-created ports ready to be used by pods and speed up the pods’ booting time.
Each network policy is mapped into an RHOSP security group, and depending on the
NetworkPolicy
spec, one or more rules are added to the security group.Each service is mapped to an RHOSP load balancer. Consider this requirement when estimating the number of security groups required for the quota.
If you are using RHOSP version 15 or earlier, or the
ovn-octavia driver
, each load balancer has a security group with the user project.The quota does not account for load balancer resources (such as VM resources), but you must consider these resources when you decide the RHOSP deployment’s size. The default installation will have more than 50 load balancers; the clusters must be able to accommodate them.
If you are using RHOSP version 16 with the OVN Octavia driver enabled, only one load balancer VM is generated; services are load balanced through OVN flows.
An OKD deployment comprises control plane machines, compute machines, and a bootstrap machine.
To enable Kuryr SDN, your environment must meet the following requirements:
Run RHOSP 13+.
Have Overcloud with Octavia.
Use Neutron Trunk ports extension.
Use
openvswitch
firewall driver if ML2/OVS Neutron driver is used instead ofovs-hybrid
.
Increasing quota
When using Kuryr SDN, you must increase quotas to satisfy the Red Hat OpenStack Platform (RHOSP) resources used by pods, services, namespaces, and network policies.
Procedure
Increase the quotas for a project by running the following command:
$ sudo openstack quota set --secgroups 250 --secgroup-rules 1000 --ports 1500 --subnets 250 --networks 250 <project>
Configuring Neutron
Kuryr CNI leverages the Neutron Trunks extension to plug containers into the Red Hat OpenStack Platform (RHOSP) SDN, so you must use the trunks
extension for Kuryr to properly work.
In addition, if you leverage the default ML2/OVS Neutron driver, the firewall must be set to openvswitch
instead of ovs_hybrid
so that security groups are enforced on trunk subports and Kuryr can properly handle network policies.
Configuring Octavia
Kuryr SDN uses Red Hat OpenStack Platform (RHOSP)’s Octavia LBaaS to implement OKD services. Thus, you must install and configure Octavia components in RHOSP to use Kuryr SDN.
To enable Octavia, you must include the Octavia service during the installation of the RHOSP Overcloud, or upgrade the Octavia service if the Overcloud already exists. The following steps for enabling Octavia apply to both a clean install of the Overcloud or an Overcloud update.
The following steps only capture the key pieces required during the deployment of RHOSP when dealing with Octavia. It is also important to note that registry methods vary. This example uses the local registry method. |
Procedure
If you are using the local registry, create a template to upload the images to the registry. For example:
(undercloud) $ openstack overcloud container image prepare \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
--namespace=registry.access.redhat.com/rhosp13 \
--push-destination=<local-ip-from-undercloud.conf>:8787 \
--prefix=openstack- \
--tag-from-label {version}-{product-version} \
--output-env-file=/home/stack/templates/overcloud_images.yaml \
--output-images-file /home/stack/local_registry_images.yaml
Verify that the
local_registry_images.yaml
file contains the Octavia images. For example:...
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-api:13.0-43
push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-health-manager:13.0-45
push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-housekeeping:13.0-45
push_destination: <local-ip-from-undercloud.conf>:8787
- imagename: registry.access.redhat.com/rhosp13/openstack-octavia-worker:13.0-44
push_destination: <local-ip-from-undercloud.conf>:8787
The Octavia container versions vary depending upon the specific RHOSP release installed.
Pull the container images from
registry.redhat.io
to the Undercloud node:(undercloud) $ sudo openstack overcloud container image upload \
--config-file /home/stack/local_registry_images.yaml \
--verbose
This may take some time depending on the speed of your network and Undercloud disk.
Since an Octavia load balancer is used to access the OKD API, you must increase their listeners’ default timeouts for the connections. The default timeout is 50 seconds. Increase the timeout to 20 minutes by passing the following file to the Overcloud deploy command:
(undercloud) $ cat octavia_timeouts.yaml
parameter_defaults:
OctaviaTimeoutClientData: 1200000
OctaviaTimeoutMemberData: 1200000
This is not needed for RHOSP 13.0.13+.
Install or update your Overcloud environment with Octavia:
$ openstack overcloud deploy --templates \
-e /usr/share/openstack-tripleo-heat-templates/environments/services-docker/octavia.yaml \
-e octavia_timeouts.yaml
This command only includes the files associated with Octavia; it varies based on your specific installation of RHOSP. See the RHOSP documentation for further information. For more information on customizing your Octavia installation, see installation of Octavia using Director.
When leveraging Kuryr SDN, the Overcloud installation requires the Neutron
trunk
extension. This is available by default on director deployments. Use theopenvswitch
firewall instead of the defaultovs-hybrid
when the Neutron backend is ML2/OVS. There is no need for modifications if the backend is ML2/OVN.In RHOSP versions earlier than 13.0.13, add the project ID to the
octavia.conf
configuration file after you create the project.To enforce network policies across services, like when traffic goes through the Octavia load balancer, you must ensure Octavia creates the Amphora VM security groups on the user project.
This change ensures that required load balancer security groups belong to that project, and that they can be updated to enforce services isolation.
This task is unnecessary in RHOSP version 13.0.13 or later.
Octavia implements a new ACL API that restricts access to the load balancers VIP.
Get the project ID
$ openstack project show <project>
Example output
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | |
| domain_id | default |
| enabled | True |
| id | PROJECT_ID |
| is_domain | False |
| name | *<project>* |
| parent_id | default |
| tags | [] |
+-------------+----------------------------------+
Add the project ID to
octavia.conf
for the controllers.Source the
stackrc
file:$ source stackrc # Undercloud credentials
List the Overcloud controllers:
$ openstack server list
Example output
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
│
| ID | Name | Status | Networks
| Image | Flavor |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
│
| 6bef8e73-2ba5-4860-a0b1-3937f8ca7e01 | controller-0 | ACTIVE |
ctlplane=192.168.24.8 | overcloud-full | controller |
│
| dda3173a-ab26-47f8-a2dc-8473b4a67ab9 | compute-0 | ACTIVE |
ctlplane=192.168.24.6 | overcloud-full | compute |
│
+--------------------------------------+--------------+--------+-----------------------+----------------+------------+
SSH into the controller(s).
$ ssh heat-admin@192.168.24.8
Edit the
octavia.conf
file to add the project into the list of projects where Amphora security groups are on the user’s account.# List of project IDs that are allowed to have Load balancer security groups
# belonging to them.
amp_secgroup_allowed_projects = PROJECT_ID
Restart the Octavia worker so the new configuration loads.
controller-0$ sudo docker restart octavia_worker
Depending on your RHOSP environment, Octavia might not support UDP listeners. If you use Kuryr SDN on RHOSP version 13.0.13 or earlier, UDP services are not supported. RHOSP version 16 or later support UDP. |
The Octavia OVN Driver
Octavia supports multiple provider drivers through the Octavia API.
To see all available Octavia provider drivers, on a command line, enter:
$ openstack loadbalancer provider list
Example output
+---------+-------------------------------------------------+
| name | description |
+---------+-------------------------------------------------+
| amphora | The Octavia Amphora driver. |
| octavia | Deprecated alias of the Octavia Amphora driver. |
| ovn | Octavia OVN driver. |
+---------+-------------------------------------------------+
Beginning with RHOSP version 16, the Octavia OVN provider driver (ovn
) is supported on OKD on RHOSP deployments.
ovn
is an integration driver for the load balancing that Octavia and OVN provide. It supports basic load balancing capabilities, and is based on OpenFlow rules. The driver is automatically enabled in Octavia by Director on deployments that use OVN Neutron ML2.
The Amphora provider driver is the default driver. If ovn
is enabled, however, Kuryr uses it.
If Kuryr uses ovn
instead of Amphora, it offers the following benefits:
Decreased resource requirements. Kuryr does not require a load balancer VM for each service.
Reduced network latency.
Increased service creation speed by using OpenFlow rules instead of a VM for each service.
Distributed load balancing actions across all nodes instead of centralized on Amphora VMs.
You can configure your cluster to use the Octavia OVN driver after your RHOSP cloud is upgraded from version 13 to version 16.
Known limitations of installing with Kuryr
Using OKD with Kuryr SDN has several known limitations.
RHOSP general limitations
Using OKD with Kuryr SDN has several limitations that apply to all versions and environments:
Service
objects with theNodePort
type are not supported.Clusters that use the OVN Octavia provider driver support
Service
objects for which the.spec.selector
property is unspecified only if the.subsets.addresses
property of theEndpoints
object includes the subnet of the nodes or pods.If the subnet on which machines are created is not connected to a router, or if the subnet is connected, but the router has no external gateway set, Kuryr cannot create floating IPs for
Service
objects with typeLoadBalancer
.
RHOSP version limitations
Using OKD with Kuryr SDN has several limitations that depend on the RHOSP version.
RHOSP versions before 16 use the default Octavia load balancer driver (Amphora). This driver requires that one Amphora load balancer VM is deployed per OKD service. Creating too many services can cause you to run out of resources.
Deployments of later versions of RHOSP that have the OVN Octavia driver disabled also use the Amphora driver. They are subject to the same resource concerns as earlier versions of RHOSP.
Octavia RHOSP versions before 13.0.13 do not support UDP listeners. Therefore, OKD UDP services are not supported.
Octavia RHOSP versions before 13.0.13 cannot listen to multiple protocols on the same port. Services that expose the same port to different protocols, like TCP and UDP, are not supported.
RHOSP environment limitations
There are limitations when using Kuryr SDN that depend on your deployment environment.
Because of Octavia’s lack of support for the UDP protocol and multiple listeners, if the RHOSP version is earlier than 13.0.13, Kuryr forces pods to use TCP for DNS resolution.
In Go versions 1.12 and earlier, applications that are compiled with CGO support disabled use UDP only. In this case, the native Go resolver does not recognize the use-vc
option in resolv.conf
, which controls whether TCP is forced for DNS resolution. As a result, UDP is still used for DNS resolution, which fails.
To ensure that TCP forcing is allowed, compile applications either with the environment variable CGO_ENABLED
set to 1
, i.e. CGO_ENABLED=1
, or ensure that the variable is absent.
In Go versions 1.13 and later, TCP is used automatically if DNS resolution using UDP fails.
musl-based containers, including Alpine-based containers, do not support the |
RHOSP upgrade limitations
As a result of the RHOSP upgrade process, the Octavia API might be changed, and upgrades to the Amphora images that are used for load balancers might be required.
You can address API changes on an individual basis.
If the Amphora image is upgraded, the RHOSP operator can handle existing load balancer VMs in two ways:
Upgrade each VM by triggering a load balancer failover.
Leave responsibility for upgrading the VMs to users.
If the operator takes the first option, there might be short downtimes during failovers.
If the operator takes the second option, the existing load balancers will not support upgraded Octavia API features, like UDP listeners. In this case, users must recreate their Services to use these features.
If OKD detects a new Octavia version that supports UDP load balancing, it recreates the DNS service automatically. The service recreation ensures that the service default supports UDP load balancing. The recreation causes the DNS service approximately one minute of downtime. |
Control plane and compute machines
By default, the OKD installation process stands up three control plane and three compute machines.
Each machine requires:
An instance from the RHOSP quota
A port from the RHOSP quota
A flavor with at least 16 GB memory, 4 vCPUs, and 25 GB storage space
Compute machines host the applications that you run on OKD; aim to run as many as you can. |
Bootstrap machine
During installation, a bootstrap machine is temporarily provisioned to stand up the control plane. After the production control plane is ready, the bootstrap machine is deprovisioned.
The bootstrap machine requires:
An instance from the RHOSP quota
A port from the RHOSP quota
A flavor with at least 16 GB memory, 4 vCPUs, and 25 GB storage space
Enabling Swift on RHOSP
Swift is operated by a user account with the swiftoperator
role. Add the role to an account before you run the installation program.
If the Red Hat OpenStack Platform (RHOSP) object storage service, commonly known as Swift, is available, OKD uses it as the image registry storage. If it is unavailable, the installation program relies on the RHOSP block storage service, commonly known as Cinder. If Swift is present and you want to use it, you must enable access to it. If it is not present, or if you do not want to use it, skip this section. |
Prerequisites
You have a RHOSP administrator account on the target environment.
The Swift service is installed.
On Ceph RGW, the
account in url
option is enabled.
Procedure
To enable Swift on RHOSP:
As an administrator in the RHOSP CLI, add the
swiftoperator
role to the account that will access Swift:$ openstack role add --user <user> --project <project> swiftoperator
Your RHOSP deployment can now use Swift for the image registry.
Verifying external network access
The OKD installation process requires external network access. You must provide an external network value to it, or deployment fails. Before you begin the process, verify that a network with the external router type exists in Red Hat OpenStack Platform (RHOSP).
Prerequisites
Procedure
Using the RHOSP CLI, verify the name and ID of the ‘External’ network:
$ openstack network list --long -c ID -c Name -c "Router Type"
Example output
+--------------------------------------+----------------+-------------+
| ID | Name | Router Type |
+--------------------------------------+----------------+-------------+
| 148a8023-62a7-4672-b018-003462f8d7dc | public_network | External |
+--------------------------------------+----------------+-------------+
A network with an external router type appears in the network list. If at least one does not, see Creating a default floating IP network and Creating a default provider network.
If the external network’s CIDR range overlaps one of the default network ranges, you must change the matching network ranges in the The default network ranges are:
|
If the installation program finds multiple networks with the same name, it sets one of them at random. To avoid this behavior, create unique names for resources in RHOSP. |
If the Neutron trunk service plug-in is enabled, a trunk port is created by default. For more information, see Neutron trunk port. |
Defining parameters for the installation program
The OKD installation program relies on a file that is called clouds.yaml
. The file describes Red Hat OpenStack Platform (RHOSP) configuration parameters, including the project name, log in information, and authorization service URLs.
Procedure
Create the
clouds.yaml
file:If your RHOSP distribution includes the Horizon web UI, generate a
clouds.yaml
file in it.Remember to add a password to the
auth
field. You can also keep secrets in a separate file fromclouds.yaml
.If your RHOSP distribution does not include the Horizon web UI, or you do not want to use Horizon, create the file yourself. For detailed information about
clouds.yaml
, see Config files in the RHOSP documentation.clouds:
shiftstack:
auth:
auth_url: http://10.10.14.42:5000/v3
project_name: shiftstack
username: shiftstack_user
password: XXX
user_domain_name: Default
project_domain_name: Default
dev-env:
region_name: RegionOne
auth:
username: 'devuser'
password: XXX
project_name: 'devonly'
auth_url: 'https://10.10.14.22:5001/v2.0'
If your RHOSP installation uses self-signed certificate authority (CA) certificates for endpoint authentication:
Copy the certificate authority file to your machine.
Add the
cacerts
key to theclouds.yaml
file. The value must be an absolute, non-root-accessible path to the CA certificate:clouds:
shiftstack:
...
cacert: "/etc/pki/ca-trust/source/anchors/ca.crt.pem"
After you run the installer with a custom CA certificate, you can update the certificate by editing the value of the
ca-cert.pem
key in thecloud-provider-config
keymap. On a command line, run:$ oc edit configmap -n openshift-config cloud-provider-config
Place the
clouds.yaml
file in one of the following locations:The value of the
OS_CLIENT_CONFIG_FILE
environment variableThe current directory
A Unix-specific user configuration directory, for example
~/.config/openstack/clouds.yaml
A Unix-specific site configuration directory, for example
/etc/openstack/clouds.yaml
The installation program searches for
clouds.yaml
in that order.
Setting cloud provider options
Optionally, you can edit the cloud provider configuration for your cluster. The cloud provider configuration controls how OKD interacts with Red Hat OpenStack Platform (RHOSP).
For a complete list of cloud provider configuration parameters, see the cloud.conf specification.
Procedure
If you have not already generated manifest files for your cluster, generate them by running the following command:
$ openshift-install --dir <destination_directory> create manifests
In a text editor, open the cloud-provider configuration manifest file. For example:
$ vi openshift/manifests/cloud-provider-config.yaml
Modify the options based on the cloud.conf specification.
Configuring Octavia for load balancing is a common case. For example:
#...
[LoadBalancer]
use-octavia=true (1)
lb-provider = "amphora" (2)
floating-network-id="d3deb660-4190-40a3-91f1-37326fe6ec4a"(3)
#...
1 This property enables Octavia integration. 2 This property sets the Octavia provider that your load balancer uses. It accepts “ovn”
or“amphora”
as values. If you choose to use OVN, you must also setlb-method
toSOURCE_IP_PORT
.3 This property is required if you want to use multiple external networks with your cluster. The cloud provider creates floating IP addresses on the network that is specified here. Prior to saving your changes, verify that the file is structured correctly. Clusters might fail if properties are not placed in the appropriate section.
Save the changes to the file and proceed with installation.
You can update your cloud provider configuration after you run the installer. On a command line, run:
$ oc edit configmap -n openshift-config cloud-provider-config
After you save your changes, your cluster will take some time to reconfigure itself. The process is complete if none of your nodes have a
SchedulingDisabled
status.
Obtaining the installation program
Before you install OKD, download the installation file on a local computer.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space
Procedure
Download installer from https://github.com/openshift/okd/releases
The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar -xvf openshift-install-linux.tar.gz
From the Pull Secret page on the Red Hat OpenShift Cluster Manager site, download your installation pull secret. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.
Using a pull secret from the Red Hat OpenShift Cluster Manager site is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use
{"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}}
as the pull secret when prompted during the installation.If you do not use the pull secret from the Red Hat OpenShift Cluster Manager site:
Red Hat Operators are not available.
The Telemetry and Insights operators do not send data to Red Hat.
Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.
Creating the installation configuration file
You can customize the OKD cluster you install on Red Hat OpenStack Platform (RHOSP).
Prerequisites
Obtain the OKD installation program and the pull secret for your cluster.
Obtain service principal permissions at the subscription level.
Procedure
Create the
install-config.yaml
file.Change to the directory that contains the installation program and run the following command:
$ ./openshift-install create install-config --dir <installation_directory> (1)
1 For <installation_directory>
, specify the directory name to store the files that the installation program creates.Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.
At the prompts, provide the configuration details for your cloud:
Optional: Select an SSH key to use to access your cluster machines.
For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your
ssh-agent
process uses.Select openstack as the platform to target.
Specify the Red Hat OpenStack Platform (RHOSP) external network name to use for installing the cluster.
Specify the floating IP address to use for external access to the OpenShift API.
Specify a RHOSP flavor with at least 16 GB RAM to use for control plane and compute nodes.
Select the base domain to deploy the cluster to. All DNS records will be sub-domains of this base and will also include the cluster name.
Enter a name for your cluster. The name must be 14 or fewer characters long.
Paste the pull secret that you obtained from the Pull Secret page on the Red Hat OpenShift Cluster Manager site. This field is optional.
Modify the
install-config.yaml
file. You can find more information about the available parameters in the “Installation configuration parameters” section.Back up the
install-config.yaml
file so that you can use it to install multiple clusters.The
install-config.yaml
file is consumed during the installation process. If you want to reuse the file, you must back it up now.
Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OKD cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Kuryr installations default to HTTP proxies. |
Prerequisites
For Kuryr installations on restricted networks that use the
Proxy
object, the proxy must be able to reply to the router that the cluster uses. To add a static route for the proxy configuration, from a command line as the root user, enter:$ ip route add <cluster_network_cidr> via <installer_subnet_gateway>
The restricted subnet must have a gateway that is defined and available to be linked to the
Router
resource that Kuryr creates.You have an existing
install-config.yaml
file.You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.The
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and Red Hat OpenStack Platform (RHOSP), the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).If your cluster is on AWS, you added the
ec2.<region>.amazonaws.com
,elasticloadbalancing.<region>.amazonaws.com
, ands3.<region>.amazonaws.com
endpoints to your VPC endpoint. These endpoints are required to complete requests from the nodes to the AWS EC2 API. Because the proxy works on the container level, not the node level, you must route these requests to the AWS EC2 API through the AWS private network. Adding the public IP address of the EC2 API to your allowlist in your proxy server is not sufficient.
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
noProxy: example.com (3)
additionalTrustBundle: | (4)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
...
1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http
. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify anhttpProxy
value.2 A proxy URL to use for creating HTTPS connections outside the cluster. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must not specify an httpsProxy
value.3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with .
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations.4 If provided, the installation program generates a config map that is named user-ca-bundle
in theopenshift-config
namespace to hold the additional CA certificates. If you provideadditionalTrustBundle
and at least one proxy setting, theProxy
object is configured to reference theuser-ca-bundle
config map in thetrustedCA
field. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges the contents specified for thetrustedCA
parameter with the FCOS trust bundle. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the FCOS trust bundle. If you use an MITM transparent proxy network that does not require additional proxy configuration but requires additional CAs, you must provide the MITM CA certificate.The installation program does not support the proxy
readinessEndpoints
field.Save the file and reference it when installing OKD.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the |
Installation configuration parameters
Before you deploy an OKD cluster, you provide parameter values to describe your account on the cloud platform that hosts your cluster and optionally customize your cluster’s platform. When you create the install-config.yaml
installation configuration file, you provide values for the required parameters through the command line. If you customize your cluster, you can modify the install-config.yaml
file to provide more details about the platform.
After installation, you cannot modify these parameters in the |
The |
Required configuration parameters
Required installation configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| The API version for the | String |
| The base domain of your cloud provider. The base domain is used to create routes to your OKD cluster components. The full DNS name for your cluster is a combination of the | A fully-qualified domain or subdomain name, such as |
| Kubernetes resource | Object |
| The name of the cluster. DNS records for the cluster are all subdomains of | String of lowercase letters, hyphens ( |
| The configuration for the specific platform upon which to perform the installation: | Object |
Network configuration parameters
You can customize your installation configuration based on the requirements of your existing network infrastructure. For example, you can expand the IP address block for the cluster network or provide different IP address blocks than the defaults.
Only IPv4 addresses are supported.
Parameter | Description | Values | ||
---|---|---|---|---|
| The configuration for the cluster network. | Object
| ||
| The cluster network provider Container Network Interface (CNI) plug-in to install. | Either | ||
| The IP address blocks for pods. The default value is If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example:
| ||
| Required if you use An IPv4 network. | An IP address block in Classless Inter-Domain Routing (CIDR) notation. The prefix length for an IPv4 block is between | ||
| The subnet prefix length to assign to each individual node. For example, if | A subnet prefix. The default value is | ||
| The IP address block for services. The default value is The OpenShift SDN and OVN-Kubernetes network providers support only a single IP address block for the service network. | An array with an IP address block in CIDR format. For example:
| ||
| The IP address blocks for machines. If you specify multiple IP address blocks, the blocks must not overlap. | An array of objects. For example:
| ||
| Required if you use | An IP network block in CIDR notation. For example,
|
Optional configuration parameters
Optional installation configuration parameters are described in the following table:
Parameter | Description | Values | ||
---|---|---|---|---|
| A PEM-encoded X.509 certificate bundle that is added to the nodes’ trusted certificate store. This trust bundle may also be used when a proxy has been configured. | String | ||
| The configuration for the machines that comprise the compute nodes. | Array of | ||
| Determines the instruction set architecture of the machines in the pool. Currently, heteregeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String | ||
| Whether to enable or disable simultaneous multithreading, or
|
| ||
| Required if you use |
| ||
| Required if you use |
| ||
| The number of compute machines, which are also known as worker machines, to provision. | A positive integer greater than or equal to | ||
| The configuration for the machines that comprise the control plane. | Array of | ||
| Determines the instruction set architecture of the machines in the pool. Currently, heterogeneous clusters are not supported, so all pools must specify the same architecture. Valid values are | String | ||
| Whether to enable or disable simultaneous multithreading, or
|
| ||
| Required if you use |
| ||
| Required if you use |
| ||
| The number of control plane machines to provision. | The only supported value is | ||
| The Cloud Credential Operator (CCO) mode. If no mode is specified, the CCO dynamically tries to determine the capabilities of the provided credentials, with a preference for mint mode on the platforms where multiple modes are supported.
|
| ||
| Sources and repositories for the release-image content. | Array of objects. Includes a | ||
| Required if you use | String | ||
| Specify one or more repositories that may also contain the same images. | Array of strings | ||
| How to publish or expose the user-facing endpoints of your cluster, such as the Kubernetes API, OpenShift routes. |
Setting this field to | ||
| The SSH key or keys to authenticate access your cluster machines.
| One or more keys. For example:
|
Additional Red Hat OpenStack Platform (RHOSP) configuration parameters
Additional RHOSP configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| For compute machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage. | Integer, for example |
| For compute machines, the root volume’s type. | String, for example |
| For control plane machines, the size in gigabytes of the root volume. If you do not set this value, machines use ephemeral storage. | Integer, for example |
| For control plane machines, the root volume’s type. | String, for example |
| The name of the RHOSP cloud to use from the list of clouds in the | String, for example |
| The RHOSP external network name to be used for installation. | String, for example |
| The RHOSP flavor to use for control plane and compute machines. This property is deprecated. To use a flavor as the default for all machine pools, add it as the value of the | String, for example |
Optional RHOSP configuration parameters
Optional RHOSP configuration parameters are described in the following table:
Parameter | Description | Values |
---|---|---|
| Additional networks that are associated with compute machines. Allowed address pairs are not created for additional networks. | A list of one or more UUIDs as strings. For example, |
| Additional security groups that are associated with compute machines. | A list of one or more UUIDs as strings. For example, |
| RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured. On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OKD services that rely on Amphora VMs, are not created according to the value of this property. | A list of strings. For example, |
| For compute machines, the availability zone to install root volumes on. If you do not set a value for this parameter, the installer selects the default availability zone. | A list of strings, for example |
| Additional networks that are associated with control plane machines. Allowed address pairs are not created for additional networks. | A list of one or more UUIDs as strings. For example, |
| Additional security groups that are associated with control plane machines. | A list of one or more UUIDs as strings. For example, |
| RHOSP Compute (Nova) availability zones (AZs) to install machines on. If this parameter is not set, the installer relies on the default settings for Nova that the RHOSP administrator configured. On clusters that use Kuryr, RHOSP Octavia does not support availability zones. Load balancers and, if you are using the Amphora provider driver, OKD services that rely on Amphora VMs, are not created according to the value of this property. | A list of strings. For example, |
| For control plane machines, the availability zone to install root volumes on. If you do not set this value, the installer selects the default availability zone. | A list of strings, for example |
| The location from which the installer downloads the FCOS image. You must set this parameter to perform an installation in a restricted network. | An HTTP or HTTPS URL, optionally with an SHA-256 checksum. For example, |
| Properties to add to the installer-uploaded ClusterOSImage in Glance. This property is ignored if You can use this property to exceed the default persistent volume (PV) limit for RHOSP of 26 PVs per node. To exceed the limit, set the You can also use this property to enable the QEMU guest agent by including the | A list of key-value string pairs. For example, |
| The default machine pool platform configuration. |
|
| An existing floating IP address to associate with the Ingress port. To use this property, you must also define the | An IP address, for example |
| An existing floating IP address to associate with the API load balancer. To use this property, you must also define the | An IP address, for example |
| IP addresses for external DNS servers that cluster instances use for DNS resolution. | A list of IP addresses as strings. For example, |
| The UUID of a RHOSP subnet that the cluster’s nodes use. Nodes and virtual IP (VIP) ports are created on this subnet. The first item in If you deploy to a custom subnet, you cannot specify an external DNS server to the OKD installer. Instead, add DNS to the subnet in RHOSP. | A UUID as a string. For example, |
Custom subnets in RHOSP deployments
Optionally, you can deploy a cluster on a Red Hat OpenStack Platform (RHOSP) subnet of your choice. The subnet’s GUID is passed as the value of platform.openstack.machinesSubnet
in the install-config.yaml
file.
This subnet is used as the cluster’s primary subnet. By default, nodes and ports are created on it. You can create nodes and ports on a different RHOSP subnet by setting the value of the platform.openstack.machinesSubnet
property to the subnet’s UUID.
Before you run the OKD installer with a custom subnet, verify that your configuration meets the following requirements:
The subnet that is used by
platform.openstack.machinesSubnet
has DHCP enabled.The CIDR of
platform.openstack.machinesSubnet
matches the CIDR ofnetworking.machineNetwork
.The installation program user has permission to create ports on this network, including ports with fixed IP addresses.
Clusters that use custom subnets have the following limitations:
If you plan to install a cluster that uses floating IP addresses, the
platform.openstack.machinesSubnet
subnet must be attached to a router that is connected to theexternalNetwork
network.If the
platform.openstack.machinesSubnet
value is set in theinstall-config.yaml
file, the installation program does not create a private network or subnet for your RHOSP machines.You cannot use the
platform.openstack.externalDNS
property at the same time as a custom subnet. To add DNS to a cluster that uses a custom subnet, configure DNS on the RHOSP network.
By default, the API VIP takes x.x.x.5 and the Ingress VIP takes x.x.x.7 from your network’s CIDR block. To override these default values, set values for |
Sample customized install-config.yaml
file for RHOSP with Kuryr
To deploy with Kuryr SDN instead of the default OpenShift SDN, you must modify the install-config.yaml
file to include Kuryr
as the desired networking.networkType
and proceed with the default OKD SDN installation steps. This sample install-config.yaml
demonstrates all of the possible Red Hat OpenStack Platform (RHOSP) customization options.
This sample file is provided for reference only. You must obtain your |
apiVersion: v1
baseDomain: example.com
controlPlane:
name: master
platform: {}
replicas: 3
compute:
- name: worker
platform:
openstack:
type: ml.large
replicas: 3
metadata:
name: example
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.0.0.0/16
serviceNetwork:
- 172.30.0.0/16 (1)
networkType: Kuryr
platform:
openstack:
cloud: mycloud
externalNetwork: external
computeFlavor: m1.xlarge
apiFloatingIP: 128.0.0.1
trunkSupport: true (2)
octaviaSupport: true (2)
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA...
1 | The Amphora Octavia driver creates two ports per load balancer. As a result, the service subnet that the installer creates is twice the size of the CIDR that is specified as the value of the serviceNetwork property. The larger range is required to prevent IP address conflicts. |
2 | Both trunkSupport and octaviaSupport are automatically discovered by the installer, so there is no need to set them. But if your environment does not meet both requirements, Kuryr SDN will not properly work. Trunks are needed to connect the pods to the RHOSP network and Octavia is required to create the OKD services. |
Cluster deployment on RHOSP provider networks
You can deploy your OKD clusters on Red Hat OpenStack Platform (RHOSP) with a primary network interface on a provider network. Provider networks are commonly used to give projects direct access to a public network that can be used to reach the internet. You can also share provider networks among projects as part of the network creation process.
RHOSP provider networks map directly to an existing physical network in the data center. A RHOSP administrator must create them.
In the following example, OKD workloads are connected to a data center by using a provider network:
OKD clusters that are installed on provider networks do not require tenant networks or floating IP addresses. The installer does not create these resources during installation.
Example provider network types include flat (untagged) and VLAN (802.1Q tagged).
A cluster can support as many provider network connections as the network type allows. For example, VLAN networks typically support up to 4096 connections. |
You can learn more about provider and tenant networks in the RHOSP documentation.
RHOSP provider network requirements for cluster installation
Before you install an OKD cluster, your Red Hat OpenStack Platform (RHOSP) deployment and provider network must meet a number of conditions:
The RHOSP networking service (Neutron) is enabled and accessible through the RHOSP networking API.
The RHOSP networking service has the port security and allowed address pairs extensions enabled.
The provider network can be shared with other tenants.
Use the
openstack network create
command with the—share
flag to create a network that can be shared.The RHOSP project that you use to install the cluster must own the provider network, as well as an appropriate subnet.
- To create a network for a project that is named “openshift,” enter the following command
$ openstack network create —project openshift
- To create a subnet for a project that is named “openshift,” enter the following command
$ openstack subnet create —project openshift
To learn more about creating networks on RHOSP, read the provider networks documentation.
If the cluster is owned by the
admin
user, you must run the installer as that user to create ports on the network.Provider networks must be owned by the RHOSP project that is used to create the cluster. If they are not, the RHOSP Compute service (Nova) cannot request a port from that network.
Verify that the provider network can reach the RHOSP metadata service IP address, which is
169.254.169.254
by default.Depending on your RHOSP SDN and networking service configuration, you might need to provide the route when you create the subnet. For example:
$ openstack subnet create --dhcp --host-route destination=169.254.169.254/32,gateway=192.0.2.2 ...
Optional: To secure the network, create role-based access control (RBAC) rules that limit network access to a single project.
Deploying a cluster that has a primary interface on a provider network
You can deploy an OKD cluster that has its primary network interface on an Red Hat OpenStack Platform (RHOSP) provider network. .Prerequisites
- Your Red Hat OpenStack Platform (RHOSP) deployment is configured as described by “RHOSP provider network requirements for cluster installation”.
Procedure
In a text editor, open the
install-config.yaml
file.Set the value of the
platform.openstack.apiVIP
property to the IP address for the API VIP.Set the value of the
platform.openstack.ingressVIP
property to the IP address for the Ingress VIP.Set the value of the
platform.openstack.machinesSubnet
property to the UUID of the provider network subnet.Set the value of the
networking.machineNetwork.cidr
property to the CIDR block of the provider network subnet.
The |
Section of an installation configuration file for a cluster that relies on a RHOSP provider network
...
platform:
openstack:
apiVIP: 192.0.2.13
ingressVIP: 192.0.2.23
machinesSubnet: fa806b2f-ac49-4bce-b9db-124bc64209bf
# ...
networking:
machineNetwork:
- cidr: 192.0.2.0/24
You cannot set the |
When you deploy the cluster, the installer uses the install-config.yaml
file to deploy the cluster on the provider network.
You can add additional networks, including provider networks, to the After you deploy your cluster, you can attach pods to additional networks. For more information, see Understanding multiple networks. |
Kuryr ports pools
A Kuryr ports pool maintains a number of ports on standby for pod creation.
Keeping ports on standby minimizes pod creation time. Without ports pools, Kuryr must explicitly request port creation or deletion whenever a pod is created or deleted.
The Neutron ports that Kuryr uses are created in subnets that are tied to namespaces. These pod ports are also added as subports to the primary port of OKD cluster nodes.
Because Kuryr keeps each namespace in a separate subnet, a separate ports pool is maintained for each namespace-worker pair.
Prior to installing a cluster, you can set the following parameters in the cluster-network-03-config.yml
manifest file to configure ports pool behavior:
The
enablePortPoolsPrepopulation
parameter controls pool prepopulation, which forces Kuryr to add ports to the pool when it is created, such as when a new host is added, or a new namespace is created. The default value isfalse
.The
poolMinPorts
parameter is the minimum number of free ports that are kept in the pool. The default value is1
.The
poolMaxPorts
parameter is the maximum number of free ports that are kept in the pool. A value of0
disables that upper bound. This is the default setting.If your OpenStack port quota is low, or you have a limited number of IP addresses on the pod network, consider setting this option to ensure that unneeded ports are deleted.
The
poolBatchPorts
parameter defines the maximum number of Neutron ports that can be created at once. The default value is3
.
Adjusting Kuryr ports pools during installation
During installation, you can configure how Kuryr manages Red Hat OpenStack Platform (RHOSP) Neutron ports to control the speed and efficiency of pod creation.
Prerequisites
- Create and modify the
install-config.yaml
file.
Procedure
From a command line, create the manifest files:
$ ./openshift-install create manifests --dir <installation_directory> (1)
1 For <installation_directory>
, specify the name of the directory that contains theinstall-config.yaml
file for your cluster.Create a file that is named
cluster-network-03-config.yml
in the<installation_directory>/manifests/
directory:$ touch <installation_directory>/manifests/cluster-network-03-config.yml (1)
1 For <installation_directory>
, specify the directory name that contains themanifests/
directory for your cluster.After creating the file, several network configuration files are in the
manifests/
directory, as shown:$ ls <installation_directory>/manifests/cluster-network-*
Example output
cluster-network-01-crd.yml
cluster-network-02-config.yml
cluster-network-03-config.yml
Open the
cluster-network-03-config.yml
file in an editor, and enter a custom resource (CR) that describes the Cluster Network Operator configuration that you want:$ oc edit networks.operator.openshift.io cluster
Edit the settings to meet your requirements. The following file is provided as an example:
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
serviceNetwork:
- 172.30.0.0/16
defaultNetwork:
type: Kuryr
kuryrConfig:
enablePortPoolsPrepopulation: false (1)
poolMinPorts: 1 (2)
poolBatchPorts: 3 (3)
poolMaxPorts: 5 (4)
openstackServiceNetwork: 172.30.0.0/15 (5)
1 Set the value of enablePortPoolsPrepopulation
totrue
to make Kuryr create new Neutron ports after a namespace is created or a new node is added to the cluster. This setting raises the Neutron ports quota but can reduce the time that is required to spawn pods. The default value isfalse
.2 Kuryr creates new ports for a pool if the number of free ports in that pool is lower than the value of poolMinPorts
. The default value is1
.3 poolBatchPorts
controls the number of new ports that are created if the number of free ports is lower than the value ofpoolMinPorts
. The default value is3
.4 If the number of free ports in a pool is higher than the value of poolMaxPorts
, Kuryr deletes them until the number matches that value. Setting this value to0
disables this upper bound, preventing pools from shrinking. The default value is0
.5 The openStackServiceNetwork
parameter defines the CIDR range of the network from which IP addresses are allocated to RHOSP Octavia’s LoadBalancers.If this parameter is used with the Amphora driver, Octavia takes two IP addresses from this network for each load balancer: one for OpenShift and the other for VRRP connections. Because these IP addresses are managed by OKD and Neutron respectively, they must come from different pools. Therefore, the value of
openStackServiceNetwork
must be at least twice the size of the value ofserviceNetwork
, and the value ofserviceNetwork
must overlap entirely with the range that is defined byopenStackServiceNetwork
.The CNO verifies that VRRP IP addresses that are taken from the range that is defined by this parameter do not overlap with the range that is defined by the
serviceNetwork
parameter.If this parameter is not set, the CNO uses an expanded value of
serviceNetwork
that is determined by decrementing the prefix size by 1.Save the
cluster-network-03-config.yml
file, and exit the text editor.Optional: Back up the
manifests/cluster-network-03-config.yml
file. The installation program deletes themanifests/
directory while creating the cluster.
Setting compute machine affinity
Optionally, you can set the affinity policy for compute machines during installation. The installer does not select an affinity policy for compute machines by default.
You can also create machine sets that use particular RHOSP server groups after installation.
Control plane machines are created with a |
You can learn more about RHOSP instance scheduling and placement in the RHOSP documentation. |
Prerequisites
- Create the
install-config.yaml
file and complete any modifications to it.
Procedure
Using the RHOSP command-line interface, create a server group for your compute machines. For example:
$ openstack \
--os-compute-api-version=2.15 \
server group create \
--policy anti-affinity \
my-openshift-worker-group
For more information, see the server group create command documentation.
Change to the directory that contains the installation program and create the manifests:
$ ./openshift-install create manifests --dir <installation_directory>
where:
installation_directory
Specifies the name of the directory that contains the
install-config.yaml
file for your cluster.Open
manifests/99_openshift-cluster-api_worker-machineset-0.yaml
, theMachineSet
definition file.Add the property
serverGroupID
to the definition beneath thespec.template.spec.providerSpec.value
property. For example:apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
machine.openshift.io/cluster-api-machine-role: <node_role>
machine.openshift.io/cluster-api-machine-type: <node_role>
name: <infrastructure_ID>-<node_role>
namespace: openshift-machine-api
spec:
replicas: <number_of_replicas>
selector:
matchLabels:
machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
template:
metadata:
labels:
machine.openshift.io/cluster-api-cluster: <infrastructure_ID>
machine.openshift.io/cluster-api-machine-role: <node_role>
machine.openshift.io/cluster-api-machine-type: <node_role>
machine.openshift.io/cluster-api-machineset: <infrastructure_ID>-<node_role>
spec:
providerSpec:
value:
apiVersion: openstackproviderconfig.openshift.io/v1alpha1
cloudName: openstack
cloudsSecret:
name: openstack-cloud-credentials
namespace: openshift-machine-api
flavor: <nova_flavor>
image: <glance_image_name_or_location>
serverGroupID: aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee (1)
kind: OpenstackProviderSpec
networks:
- filter: {}
subnets:
- filter:
name: <subnet_name>
tags: openshiftClusterID=<infrastructure_ID>
securityGroups:
- filter: {}
name: <infrastructure_ID>-<node_role>
serverMetadata:
Name: <infrastructure_ID>-<node_role>
openshiftClusterID: <infrastructure_ID>
tags:
- openshiftClusterID=<infrastructure_ID>
trunk: true
userDataSecret:
name: <node_role>-user-data
availabilityZone: <optional_openstack_availability_zone>
1 Add the UUID of your server group here. Optional: Back up the
manifests/99_openshift-cluster-api_worker-machineset-0.yaml
file. The installation program deletes themanifests/
directory when creating the cluster.
When you install the cluster, the installer uses the MachineSet
definition that you modified to create compute machines within your RHOSP server group.
Generating a key pair for cluster node SSH access
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
Procedure
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
1 Specify the path and file name, such as ~/.ssh/id_rsa
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.If you plan to install an OKD cluster that uses FIPS Validated / Modules in Process cryptographic libraries on the
x86_64
architecture, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the
~/.ssh/id_rsa.pub
public key:$ cat ~/.ssh/id_rsa.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the
./openshift-install gather
command.On some distributions, default SSH private key identities such as
~/.ssh/id_rsa
and~/.ssh/id_dsa
are managed automatically.If the
ssh-agent
process is not already running for your local user, start it as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> (1)
1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_rsa
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
- When you install OKD, provide the SSH public key to the installation program.
Enabling access to the environment
At deployment, all OKD machines are created in a Red Hat OpenStack Platform (RHOSP)-tenant network. Therefore, they are not accessible directly in most RHOSP deployments.
You can configure OKD API and application access by using floating IP addresses (FIPs) during installation. You can also complete an installation without configuring FIPs, but the installer will not configure a way to reach the API or applications externally.
Enabling access with floating IP addresses
Create floating IP (FIP) addresses for external access to the OKD API and cluster applications.
Procedure
Using the Red Hat OpenStack Platform (RHOSP) CLI, create the API FIP:
$ openstack floating ip create --description "API <cluster_name>.<base_domain>" <external_network>
Using the Red Hat OpenStack Platform (RHOSP) CLI, create the apps, or Ingress, FIP:
$ openstack floating ip create --description "Ingress <cluster_name>.<base_domain>" <external_network>
Add records that follow these patterns to your DNS server for the API and Ingress FIPs:
api.<cluster_name>.<base_domain>. IN A <API_FIP>
*.apps.<cluster_name>.<base_domain>. IN A <apps_FIP>
If you do not control the DNS server, you can add the record to your
/etc/hosts
file. This action makes the API accessible to only you, which is not suitable for production deployment but does allow installation for development and testing.Add the FIPs to the
install-config.yaml
file as the values of the following parameters:platform.openstack.ingressFloatingIP
platform.openstack.apiFloatingIP
If you use these values, you must also enter an external network as the value of the platform.openstack.externalNetwork
parameter in the install-config.yaml
file.
You can make OKD resources available outside of the cluster by assigning a floating IP address and updating your firewall configuration. |
Completing installation without floating IP addresses
You can install OKD on Red Hat OpenStack Platform (RHOSP) without providing floating IP addresses.
In the install-config.yaml
file, do not define the following parameters:
platform.openstack.ingressFloatingIP
platform.openstack.apiFloatingIP
If you cannot provide an external network, you can also leave platform.openstack.externalNetwork
blank. If you do not provide a value for platform.openstack.externalNetwork
, a router is not created for you, and, without additional action, the installer will fail to retrieve an image from Glance. You must configure external connectivity on your own.
If you run the installer from a system that cannot reach the cluster API due to a lack of floating IP addresses or name resolution, installation fails. To prevent installation failure in these cases, you can use a proxy network or run the installer from a system that is on the same network as your machines.
You can enable name resolution by creating DNS records for the API and Ingress ports. For example:
If you do not control the DNS server, you can add the record to your |
Deploying the cluster
You can install OKD on a compatible cloud platform.
You can run the |
Prerequisites
- Obtain the OKD installation program and the pull secret for your cluster.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 For <installation_directory>
, specify the location of your customized./install-config.yaml
file.2 To view different installation details, specify warn
,debug
, orerror
instead ofinfo
.If the cloud provider account that you configured on your host does not have sufficient permissions to deploy the cluster, the installation process stops, and the missing permissions are displayed.
When the cluster deployment completes, directions for accessing your cluster, including a link to its web console and credentials for the
kubeadmin
user, display in your terminal.Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "4vYBz-Ee6gm-ymBZj-Wt5AL"
INFO Time elapsed: 36m22s
The cluster access and credential information also outputs to
<installation_directory>/.openshift_install.log
when an installation succeeds.The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending
node-bootstrapper
certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.You must not delete the installation program or the files that the installation program creates. Both are required to delete the cluster.
Verifying cluster status
You can verify your OKD cluster’s status during or after installation.
Procedure
In the cluster environment, export the administrator’s kubeconfig file:
$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 For <installation_directory>
, specify the path to the directory that you stored the installation files in.The
kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server.View the control plane and compute machines created after a deployment:
$ oc get nodes
View your cluster’s version:
$ oc get clusterversion
View your Operators’ status:
$ oc get clusteroperator
View all running pods in the cluster:
$ oc get pods -A
Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.
Prerequisites
You deployed an OKD cluster.
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 For <installation_directory>
, specify the path to the directory that you stored the installation files in.Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Additional resources
- See Accessing the web console for more details about accessing and understanding the OKD web console.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
Next steps
If necessary, you can opt out of remote health reporting.
If you need to enable external access to node ports, configure ingress cluster traffic by using a node port.
If you did not configure RHOSP to accept application traffic over floating IP addresses, configure RHOSP access with floating IP addresses.