mindspore.ops.composite
Composite operators.
Pre-defined combination of operators.
mindspore.ops.composite.
core
(fn=None, **flags)[source]- A decorator to add flag to a function.
By default, the function is marked core=True using this decorator toset flag to a graph.
- Parameters
fn (Function) – Function to add flag. Default: None.
flags (dict) – The following flags can be set core, which indicates that this is a core function orother flag. Default: None.
mindspore.ops.composite.
addflags
(_fn, **flags)[source]- An interface to add flag for a function.
Note
Only supports bool value.
- Parameters
fn (Function) – Function or cell to add flag.
flags (bool) – Flags use kwargs.
Returns
- Function, the fn added flags.
Examples
- Copy>>> add_flags(net, predit=True)
- class
mindspore.ops.composite.
MultitypeFuncGraph
(name)[source] - Generate multiply graph.
MultitypeFuncGraph is a class used to generate graphs for function with different type as input.
- Parameters
name (str) – Operator name.
Raises
- ValueError – Cannot find matching fn for the given args.
Examples
- Copy>>> # `add` is a metagraph object which will add two objects according to
- >>> # input type using ".register" decorator.
- >>> add = MultitypeFuncGraph('add')
register
(*type_names)[source]- Register a function for the given type string.
- class
mindspore.ops.composite.
GradOperation
(name, get_all=False, get_by_list=False, sens_param=False)[source] - An metafuncgraph object which is used to get the gradient of output of a network(function).
The GradOperation will convert the network(function) into a back propagation graph.
- Parameters
get_all (bool) – If True, get all the gradients w.r.t inputs. Default: False.
get_by_list (bool) – If True, get all the gradients w.r.t Parameter variables.If get_all and get_by_list are both False, get the gradient w.r.t first input.If get_all and get_by_list are both True, get the gradients w.r.t inputs and Parameter variablesat the same time in the form of ((grads w.r.t inputs), (grads w.r.t parameters)). Default: False.
sens_param (bool) – Whether append sensitivity as input. If sens_param is False,a ‘ones_like(outputs)’ sensitivity will be attached automatically. Default: False.
- class
mindspore.ops.composite.
HyperMap
(ops=None)[source] - Hypermap will apply the set operation on input sequences.
Which will apply the operations of every elements of the sequence.
- Parameters
ops (Union__[MultitypeFuncGraph, None]) – ops is the operation to apply. If ops is None,the operations should be putted in the first input of the instance.
Inputs:
- args (Tuple[sequence]) - If ops is not None, all the inputs should be the same length sequences,and each row of the sequences. e.g. If args length is 2, and for i in length of each sequence(args[0][i], args[1][i]) will be the input of the operation.
If ops is not None, the first input is the operation, and the other is inputs.
- Outputs:
sequence, the output will be same type and same length of sequence from input and the value of each elementis the result of operation apply each row of element. e.g. operation(args[0][i], args[1][i]).
register
(*type_names)[source]- Register a function for the given type string.
mindspore.ops.composite.
clipby_value
(_x, clip_value_min, clip_value_max)[source]- Clips tensor values to a specified min and max.
Limits the value of
to a range, whose lower limit is ‘clip_value_min’and upper limit is ‘clip_value_max’.
Note
‘clip_value_min’ needs to be less than or equal to ‘clip_value_max’.