mindspore.common.initializer
Initializer for cell parameters.
- class
mindspore.common.initializer.
Initializer
(**kwargs)[source] The base class of the initializer.
- Parameters
kwargs (dict) – Keyword arguments for Initializer.
Returns
- Array, assigned array.
mindspore.common.initializer.
initializer
(init, shape=None, dtype=mindspore.float32)[source]Create and initialize a tensor.
- Parameters
init (Union__[Tensor, str, Initializer, numbers.Number]) – Initialize value.
shape (Union__[tuple, list, int]) – A list of integers, a tuple of integers or an integer as the shape ofoutput. Default: None.
dtype (
mindspore.dtype
) – The type of data in initialized tensor. Default: mstype.float32.
Returns
- Tensor, initialized tensor.
Examples
- Copy>>> tensor = initializer('ones', [1, 2, 3], mstype.float32)
- class
mindspore.common.initializer.
TruncatedNormal
(sigma=0.01)[source] Initialize a truncated normal distribution which is a bounded normal distribution within N(low, high).
- Parameters
sigma (float) – The sigma of the array. Default: 0.01.
Returns
- Array, truncated normal array.
- class
mindspore.common.initializer.
Normal
(sigma=0.01)[source] Initialize a normal array, and obtain values N(0, sigma) from the uniform distributionto fill the input tensor.
- Parameters
sigma (float) – The sigma of the array. Default: 0.01.
Returns
- Array, normal array.
- class
mindspore.common.initializer.
Uniform
(scale=0.07)[source] Initialize a uniform array, and obtain values U(-scale, scale) from the uniform distributionto fill the input tensor.
- Parameters
scale (float) – The scale of the array. Default: 0.07.
Returns
- Array, uniform array.
- class
mindspore.common.initializer.
HeUniform
(**kwargs)[source] - Initialize the array with He kaiming uniform algorithm, and from a uniform distribution collect samples withinU[-boundary, boundary] where
where
is the number ofinput units in the weight tensor.
- Parameters
arr (Array) – The array to be assigned.
Returns
- Array, assigned array.
- class
mindspore.common.initializer.
XavierUniform
(gain=1)[source] - Initialize the array with xavier uniform algorithm, and from a uniform distribution collect samples withinU[-boundary, boundary] where
.
- Parameters
gain (Array) – The array to be assigned. Default: 1.
Returns
- Array, assigned array.
- class
mindspore.common.initializer.
One
(**kwargs)[source] Initialize the array to one.
- Parameters
arr (Array) – The array to be assigned.
Returns
- Array, assigned array.
- class
mindspore.common.initializer.
Zero
(**kwargs)[source] Initialize the array to zero.
- Parameters
arr (Array) – The array to be assigned.
Returns
- Array, assigned array.