mindarmour.defenses
This module includes classical defense algorithms in defencing adversarialexamples and enhancing model security and trustworthy.
- class
mindarmour.defenses.
AdversarialDefense
(network, loss_fn=None, optimizer=None)[source] Adversarial training using given adversarial examples.
Examples
- Copy>>> class Net(Cell):
- >>> def __init__(self):
- >>> super(Net, self).__init__()
- >>> self._reshape = P.Reshape()
- >>> self._full_con_1 = Dense(28*28, 120)
- >>> self._full_con_2 = Dense(120, 84)
- >>> self._full_con_3 = Dense(84, 10)
- >>> self._relu = ReLU()
- >>>
- >>> def construct(self, x):
- >>> out = self._reshape(x, (-1, 28*28))
- >>> out = self._full_con_1(out)
- >>> out = self.relu(out)
- >>> out = self._full_con_2(out)
- >>> out = self.relu(out)
- >>> out = self._full_con_3(out)
- >>> return out
- >>>
- >>> net = Net()
- >>> lr = 0.0001
- >>> momentum = 0.9
- >>> loss_fn = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
- >>> optimizer = Momentum(net.trainable_params(), lr, momentum)
- >>> adv_defense = AdversarialDefense(net, loss_fn, optimizer)
- >>> inputs = np.random.rand(32, 1, 28, 28).astype(np.float32)
- >>> labels = np.random.randint(0, 10).astype(np.int32)
- >>> adv_defense.defense(inputs, labels)
defense
(inputs, labels)[source]Enhance model via training with input samples.
- Parameters
inputs (numpy.ndarray) – Input samples.
labels (numpy.ndarray) – Labels of input samples.
Returns
- numpy.ndarray, loss of defense operation.
- class
mindarmour.defenses.
AdversarialDefenseWithAttacks
(network, attacks, loss_fn=None, optimizer=None, bounds=(0.0, 1.0), replace_ratio=0.5)[source] Adversarial defense with attacks.
- Parameters
network (Cell) – A MindSpore network to be defensed.
loss_fn (Functions) – Loss function. Default: None.
optimizer (Cell) – Optimizer used to train the network. Default: None.
bounds (tuple) – Upper and lower bounds of data. In form of (clip_min,clip_max). Default: (0.0, 1.0).
replace_ratio (float) – Ratio of replacing original samples withadversarial, which must be between 0 and 1. Default: 0.5.
Raises
- ValueError – If replace_ratio is not between 0 and 1.
Examples
- Copy>>> net = Net()
- >>> fgsm = FastGradientSignMethod(net)
- >>> pgd = ProjectedGradientDescent(net)
- >>> ead = AdversarialDefenseWithAttacks(net, [fgsm, pgd])
- >>> ead.defense(inputs, labels)
defense
(inputs, labels)[source]Enhance model via training with adversarial examples generated from input samples.
- Parameters
inputs (numpy.ndarray) – Input samples.
labels (numpy.ndarray) – Labels of input samples.
Returns
- numpy.ndarray, loss of adversarial defense operation.
- class
mindarmour.defenses.
NaturalAdversarialDefense
(network, loss_fn=None, optimizer=None, bounds=(0.0, 1.0), replace_ratio=0.5, eps=0.1)[source] - Adversarial training based on FGSM.
Reference: A. Kurakin, et al., “Adversarial machine learning at scale,” inICLR, 2017.
- Parameters
network (Cell) – A MindSpore network to be defensed.
loss_fn (Functions) – Loss function. Default: None.
optimizer (Cell) – Optimizer used to train the network. Default: None.
bounds (tuple) – Upper and lower bounds of data. In form of (clip_min,clip_max). Default: (0.0, 1.0).
replace_ratio (float) – Ratio of replacing original samples withadversarial samples. Default: 0.5.
eps (float) – Step size of the attack method(FGSM). Default: 0.1.
Examples
- Copy>>> net = Net()
- >>> adv_defense = NaturalAdversarialDefense(net)
- >>> adv_defense.defense(inputs, labels)
- class
mindarmour.defenses.
ProjectedAdversarialDefense
(network, loss_fn=None, optimizer=None, bounds=(0.0, 1.0), replace_ratio=0.5, eps=0.3, eps_iter=0.1, nb_iter=5, norm_level='inf')[source] - Adversarial training based on PGD.
Reference: A. Madry, et al., “Towards deep learning models resistant toadversarial attacks,” in ICLR, 2018.
- Parameters
network (Cell) – A MindSpore network to be defensed.
loss_fn (Functions) – Loss function. Default: None.
optimizer (Cell) – Optimizer used to train the nerwork. Default: None.
bounds (tuple) – Upper and lower bounds of input data. In form of(clip_min, clip_max). Default: (0.0, 1.0).
replace_ratio (float) – Ratio of replacing original samples withadversarial samples. Default: 0.5.
eps (float) – PGD attack parameters, epsilon. Default: 0.3.
eps_iter (int) – PGD attack parameters, inner loop epsilon.Default:0.1.
nb_iter (int) – PGD attack parameters, number of iteration.Default: 5.
norm_level (str) – Norm type. ‘inf’ or ‘l2’. Default: ‘inf’.
Examples
- Copy>>> net = Net()
- >>> adv_defense = ProjectedAdversarialDefense(net)
- >>> adv_defense.defense(inputs, labels)