Deploy PMML model with InferenceService
PMML, or predictive model markup language, is an XML format for describing data mining and statistical models, including inputs to the models, transformations used to prepare data for data mining, and the parameters that define the models themselves. In this example we show how you can serve the PMML format model on InferenceService
.
Create the InferenceService
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
name: "pmml-demo"
spec:
predictor:
pmml:
storageUri: gs://kfserving-examples/models/pmml
Create the InferenceService with above yaml
kubectl apply -f pmml.yaml
Expected Output
$ inferenceservice.serving.kserve.io/pmml-demo created
Warning
The pmmlserver
is based on Py4J and that doesn’t support multi-process mode, so we can’t set spec.predictor.containerConcurrency
. If you want to scale the PMMLServer to improve prediction performance, you should set the InferenceService’s resources.limits.cpu
to 1 and scale the replica size.
Run a prediction
The first step is to determine the ingress IP and ports and set INGRESS_HOST
and INGRESS_PORT
MODEL_NAME=pmml-demo
INPUT_PATH=@./pmml-input.json
SERVICE_HOSTNAME=$(kubectl get inferenceservice pmml-demo -o jsonpath='{.status.url}' | cut -d "/" -f 3)
curl -v -H "Host: ${SERVICE_HOSTNAME}" http://${INGRESS_HOST}:${INGRESS_PORT}/v1/models/$MODEL_NAME:predict -d $INPUT_PATH
Expected Output
* TCP_NODELAY set
* Connected to localhost (::1) port 8081 (#0)
> POST /v1/models/pmml-demo:predict HTTP/1.1
> Host: pmml-demo.default.example.com
> User-Agent: curl/7.64.1
> Accept: */*
> Content-Length: 45
> Content-Type: application/x-www-form-urlencoded
>
* upload completely sent off: 45 out of 45 bytes
< HTTP/1.1 200 OK
< content-length: 39
< content-type: application/json; charset=UTF-8
< date: Sun, 18 Oct 2020 15:50:02 GMT
< server: istio-envoy
< x-envoy-upstream-service-time: 12
<
* Connection #0 to host localhost left intact
{"predictions": [{'Species': 'setosa', 'Probability_setosa': 1.0, 'Probability_versicolor': 0.0, 'Probability_virginica': 0.0, 'Node_Id': '2'}]}* Closing connection 0