Python Native API

Requirements

You have to install thrift (>=0.13) before using the package.

How to use (Example)

First, download the latest package: pip3 install apache-iotdb

Notice: If you are installing Python API v0.13.0, DO NOT install by pip install apache-iotdb==0.13.0, use pip install apache-iotdb==0.13.0.post1 instead!

You can get an example of using the package to read and write data at here: ExamplePython Native API - 图1 (opens new window)

An example of aligned timeseries: Aligned Timeseries Session ExamplePython Native API - 图2 (opens new window)

(you need to add import iotdb in the head of the file)

Or:

  1. from iotdb.Session import Session
  2. ip = "127.0.0.1"
  3. port_ = "6667"
  4. username_ = "root"
  5. password_ = "root"
  6. session = Session(ip, port_, username_, password_)
  7. session.open(False)
  8. zone = session.get_time_zone()
  9. session.close()

Initialization

  • Initialize a Session
  1. session = Session(ip, port_, username_, password_, fetch_size=1024, zone_id="UTC+8")
  • Open a session, with a parameter to specify whether to enable RPC compression
  1. session.open(enable_rpc_compression=False)

Notice: this RPC compression status of client must comply with that of IoTDB server

  • Close a Session
  1. session.close()

Data Definition Interface (DDL Interface)

Storage Group Management

  • Set storage group
  1. session.set_storage_group(group_name)
  • Delete one or several storage groups
  1. session.delete_storage_group(group_name)
  2. session.delete_storage_groups(group_name_lst)

Timeseries Management

  • Create one or multiple timeseries
  1. session.create_time_series(ts_path, data_type, encoding, compressor,
  2. props=None, tags=None, attributes=None, alias=None)
  3. session.create_multi_time_series(
  4. ts_path_lst, data_type_lst, encoding_lst, compressor_lst,
  5. props_lst=None, tags_lst=None, attributes_lst=None, alias_lst=None
  6. )
  • Create aligned timeseries
  1. session.create_aligned_time_series(
  2. device_id, measurements_lst, data_type_lst, encoding_lst, compressor_lst
  3. )

Attention: Alias of measurements are not supported currently.

  • Delete one or several timeseries
  1. session.delete_time_series(paths_list)
  • Check whether the specific timeseries exists
  1. session.check_time_series_exists(path)

Data Manipulation Interface (DML Interface)

Insert

It is recommended to use insertTablet to help improve write efficiency.

  • Insert a Tablet,which is multiple rows of a device, each row has the same measurements
    • Better Write Performance
    • Support null values: fill the null value with any value, and then mark the null value via BitMap (from v0.13)

We have two implementations of Tablet in Python API.

  • Normal Tablet
  1. values_ = [
  2. [False, 10, 11, 1.1, 10011.1, "test01"],
  3. [True, 100, 11111, 1.25, 101.0, "test02"],
  4. [False, 100, 1, 188.1, 688.25, "test03"],
  5. [True, 0, 0, 0, 6.25, "test04"],
  6. ]
  7. timestamps_ = [1, 2, 3, 4]
  8. tablet_ = Tablet(
  9. device_id, measurements_, data_types_, values_, timestamps_
  10. )
  11. session.insert_tablet(tablet_)
  • Numpy Tablet

Comparing with Tablet, Numpy Tablet is using numpy.ndarrayPython Native API - 图3 (opens new window) to record data. With less memory footprint and time cost of serialization, the insert performance will be better.

Notice

  1. time and numerical value columns in Tablet is ndarray
  2. recommended to use the specific dtypes to each ndarray, see the example below (if not, the default dtypes are also ok).
  1. data_types_ = [
  2. TSDataType.BOOLEAN,
  3. TSDataType.INT32,
  4. TSDataType.INT64,
  5. TSDataType.FLOAT,
  6. TSDataType.DOUBLE,
  7. TSDataType.TEXT,
  8. ]
  9. np_values_ = [
  10. np.array([False, True, False, True], TSDataType.BOOLEAN.np_dtype()),
  11. np.array([10, 100, 100, 0], TSDataType.INT32.np_dtype()),
  12. np.array([11, 11111, 1, 0], TSDataType.INT64.np_dtype()),
  13. np.array([1.1, 1.25, 188.1, 0], TSDataType.FLOAT.np_dtype()),
  14. np.array([10011.1, 101.0, 688.25, 6.25], TSDataType.DOUBLE.np_dtype()),
  15. np.array(["test01", "test02", "test03", "test04"], TSDataType.TEXT.np_dtype()),
  16. ]
  17. np_timestamps_ = np.array([1, 2, 3, 4], TSDataType.INT64.np_dtype())
  18. np_tablet_ = NumpyTablet(
  19. "root.sg_test_01.d_02", measurements_, data_types_, np_values_, np_timestamps_
  20. )
  21. session.insert_tablet(np_tablet_)
  • Insert multiple Tablets
  1. session.insert_tablets(tablet_lst)
  • Insert a Record
  1. session.insert_record(device_id, timestamp, measurements_, data_types_, values_)
  • Insert multiple Records
  1. session.insert_records(
  2. device_ids_, time_list_, measurements_list_, data_type_list_, values_list_
  3. )
  • Insert multiple Records that belong to the same device. With type info the server has no need to do type inference, which leads a better performance
  1. session.insert_records_of_one_device(device_id, time_list, measurements_list, data_types_list, values_list)

Insert with type inference

When the data is of String type, we can use the following interface to perform type inference based on the value of the value itself. For example, if value is “true” , it can be automatically inferred to be a boolean type. If value is “3.2” , it can be automatically inferred as a flout type. Without type information, server has to do type inference, which may cost some time.

  • Insert a Record, which contains multiple measurement value of a device at a timestamp
  1. session.insert_str_record(device_id, timestamp, measurements, string_values)

Insert of Aligned Timeseries

The Insert of aligned timeseries uses interfaces like insert_aligned_XXX, and others are similar to the above interfaces:

  • insert_aligned_record
  • insert_aligned_records
  • insert_aligned_records_of_one_device
  • insert_aligned_tablet
  • insert_aligned_tablets

IoTDB-SQL Interface

  • Execute query statement
  1. session.execute_query_statement(sql)
  • Execute non query statement
  1. session.execute_non_query_statement(sql)

Pandas Support

To easily transform a query result to a Pandas DataframePython Native API - 图4 (opens new window) the SessionDataSet has a method .todf() which consumes the dataset and transforms it to a pandas dataframe.

Example:

  1. from iotdb.Session import Session
  2. ip = "127.0.0.1"
  3. port_ = "6667"
  4. username_ = "root"
  5. password_ = "root"
  6. session = Session(ip, port_, username_, password_)
  7. session.open(False)
  8. result = session.execute_query_statement("SELECT * FROM root.*")
  9. # Transform to Pandas Dataset
  10. df = result.todf()
  11. session.close()
  12. # Now you can work with the dataframe
  13. df = ...

IoTDB Testcontainer

The Test Support is based on the lib testcontainers (https://testcontainers-python.readthedocs.io/en/latest/index.html) which you need to install in your project if you want to use the feature.

To start (and stop) an IoTDB Database in a Docker container simply do:

  1. class MyTestCase(unittest.TestCase):
  2. def test_something(self):
  3. with IoTDBContainer() as c:
  4. session = Session("localhost", c.get_exposed_port(6667), "root", "root")
  5. session.open(False)
  6. result = session.execute_query_statement("SHOW TIMESERIES")
  7. print(result)
  8. session.close()

by default it will load the image apache/iotdb:latest, if you want a specific version just pass it like e.g. IoTDBContainer("apache/iotdb:0.12.0") to get version 0.12.0 running.

Developers

Introduction

This is an example of how to connect to IoTDB with python, using the thrift rpc interfaces. Things are almost the same on Windows or Linux, but pay attention to the difference like path separator.

Prerequisites

Python3.7 or later is preferred.

You have to install Thrift (0.11.0 or later) to compile our thrift file into python code. Below is the official tutorial of installation, eventually, you should have a thrift executable.

  1. http://thrift.apache.org/docs/install/

Before starting you need to install requirements_dev.txt in your python environment, e.g. by calling

  1. pip install -r requirements_dev.txt

Compile the thrift library and Debug

In the root of IoTDB’s source code folder, run mvn clean generate-sources -pl client-py -am.

This will automatically delete and repopulate the folder iotdb/thrift with the generated thrift files. This folder is ignored from git and should never be pushed to git!

Notice Do not upload iotdb/thrift to the git repo.

Session Client & Example

We packed up the Thrift interface in client-py/src/iotdb/Session.py (similar with its Java counterpart), also provided an example file client-py/src/SessionExample.py of how to use the session module. please read it carefully.

Or, another simple example:

  1. from iotdb.Session import Session
  2. ip = "127.0.0.1"
  3. port_ = "6667"
  4. username_ = "root"
  5. password_ = "root"
  6. session = Session(ip, port_, username_, password_)
  7. session.open(False)
  8. zone = session.get_time_zone()
  9. session.close()

Tests

Please add your custom tests in tests folder.

To run all defined tests just type pytest . in the root folder.

Notice Some tests need docker to be started on your system as a test instance is started in a docker container using testcontainersPython Native API - 图5 (opens new window).

Futher Tools

blackPython Native API - 图6 (opens new window) and flake8Python Native API - 图7 (opens new window) are installed for autoformatting and linting. Both can be run by black . or flake8 . respectively.

Releasing

To do a release just ensure that you have the right set of generated thrift files. Then run linting and auto-formatting. Then, ensure that all tests work (via pytest .). Then you are good to go to do a release!

Preparing your environment

First, install all necessary dev dependencies via pip install -r requirements_dev.txt.

Doing the Release

There is a convenient script release.sh to do all steps for a release. Namely, these are

  • Remove all transient directories from last release (if exists)
  • (Re-)generate all generated sources via mvn
  • Run Linting (flake8)
  • Run Tests via pytest
  • Build
  • Release to pypi