Hadoop-TsFile
About Hadoop-TsFile-Connector
TsFile-Hadoop-Connector implements the support of Hadoop for external data sources of Tsfile type. This enables users to read, write and query Tsfile by Hadoop.
With this connector, you can
- load a single TsFile, from either the local file system or hdfs, into Hadoop
- load all files in a specific directory, from either the local file system or hdfs, into hadoop
- write data from Hadoop into TsFile
System Requirements
Hadoop Version | Java Version | TsFile Version |
---|---|---|
2.7.3 | 1.8 | 0.10.0+ |
Note: For more information about how to download and use TsFile, please see the following link: https://github.com/apache/iotdb/tree/master/tsfile.
Data Type Correspondence
TsFile data type | Hadoop writable |
---|---|
BOOLEAN | BooleanWritable |
INT32 | IntWritable |
INT64 | LongWritable |
FLOAT | FloatWritable |
DOUBLE | DoubleWritable |
TEXT | Text |
TSFInputFormat Explanation
TSFInputFormat extract data from tsfile and format them into records of MapWritable
.
Suppose that we want to extract data of the device named d1
which has three sensors named s1
, s2
, s3
.
s1
‘s type is BOOLEAN
, s2
‘s type is DOUBLE
, s3
‘s type is TEXT
.
The MapWritable
struct will be like:
{
"time_stamp": 10000000,
"device_id": d1,
"s1": true,
"s2": 3.14,
"s3": "middle"
}
In the Map job of Hadoop, you can get any value you want by key as following:
mapwritable.get(new Text("s1"))
Note: All keys in
MapWritable
areText
type.
Examples
Read Example: calculate the sum
First of all, we should tell InputFormat what kind of data we want from tsfile.
// configure reading time enable
TSFInputFormat.setReadTime(job, true);
// configure reading deviceId enable
TSFInputFormat.setReadDeviceId(job, true);
// configure reading which deltaObjectIds
String[] deviceIds = {"device_1"};
TSFInputFormat.setReadDeviceIds(job, deltaObjectIds);
// configure reading which measurementIds
String[] measurementIds = {"sensor_1", "sensor_2", "sensor_3"};
TSFInputFormat.setReadMeasurementIds(job, measurementIds);
And then,the output key and value of mapper and reducer should be specified
// set inputformat and outputformat
job.setInputFormatClass(TSFInputFormat.class);
// set mapper output key and value
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(DoubleWritable.class);
// set reducer output key and value
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
Then, the mapper
and reducer
class is how you deal with the MapWritable
produced by TSFInputFormat
class.
public static class TSMapper extends Mapper<NullWritable, MapWritable, Text, DoubleWritable> {
@Override
protected void map(NullWritable key, MapWritable value,
Mapper<NullWritable, MapWritable, Text, DoubleWritable>.Context context)
throws IOException, InterruptedException {
Text deltaObjectId = (Text) value.get(new Text("device_id"));
context.write(deltaObjectId, (DoubleWritable) value.get(new Text("sensor_3")));
}
}
public static class TSReducer extends Reducer<Text, DoubleWritable, Text, DoubleWritable> {
@Override
protected void reduce(Text key, Iterable<DoubleWritable> values,
Reducer<Text, DoubleWritable, Text, DoubleWritable>.Context context)
throws IOException, InterruptedException {
double sum = 0;
for (DoubleWritable value : values) {
sum = sum + value.get();
}
context.write(key, new DoubleWritable(sum));
}
}
Note: For the complete code, please see the following link: https://github.com/apache/iotdb/blob/master/example/hadoop/src/main/java/org/apache/iotdb//hadoop/tsfile/TSFMRReadExample.java
Write Example: write the average into Tsfile
Except for the OutputFormatClass
, the rest of configuration code for hadoop map-reduce job is almost same as above.
job.setOutputFormatClass(TSFOutputFormat.class);
// set reducer output key and value
job.setOutputKeyClass(NullWritable.class);
job.setOutputValueClass(HDFSTSRecord.class);
Then, the mapper
and reducer
class is how you deal with the MapWritable
produced by TSFInputFormat
class.
public static class TSMapper extends Mapper<NullWritable, MapWritable, Text, MapWritable> {
@Override
protected void map(NullWritable key, MapWritable value,
Mapper<NullWritable, MapWritable, Text, MapWritable>.Context context)
throws IOException, InterruptedException {
Text deltaObjectId = (Text) value.get(new Text("device_id"));
long timestamp = ((LongWritable)value.get(new Text("timestamp"))).get();
if (timestamp % 100000 == 0) {
context.write(deltaObjectId, new MapWritable(value));
}
}
}
/**
* This reducer calculate the average value.
*/
public static class TSReducer extends Reducer<Text, MapWritable, NullWritable, HDFSTSRecord> {
@Override
protected void reduce(Text key, Iterable<MapWritable> values,
Reducer<Text, MapWritable, NullWritable, HDFSTSRecord>.Context context) throws IOException, InterruptedException {
long sensor1_value_sum = 0;
long sensor2_value_sum = 0;
double sensor3_value_sum = 0;
long num = 0;
for (MapWritable value : values) {
num++;
sensor1_value_sum += ((LongWritable)value.get(new Text("sensor_1"))).get();
sensor2_value_sum += ((LongWritable)value.get(new Text("sensor_2"))).get();
sensor3_value_sum += ((DoubleWritable)value.get(new Text("sensor_3"))).get();
}
HDFSTSRecord tsRecord = new HDFSTSRecord(1L, key.toString());
DataPoint dPoint1 = new LongDataPoint("sensor_1", sensor1_value_sum / num);
DataPoint dPoint2 = new LongDataPoint("sensor_2", sensor2_value_sum / num);
DataPoint dPoint3 = new DoubleDataPoint("sensor_3", sensor3_value_sum / num);
tsRecord.addTuple(dPoint1);
tsRecord.addTuple(dPoint2);
tsRecord.addTuple(dPoint3);
context.write(NullWritable.get(), tsRecord);
}
}
Note: For the complete code, please see the following link: https://github.com/apache/iotdb/blob/master/example/hadoop/src/main/java/org/apache/iotdb//hadoop/tsfile/TSMRWriteExample.java