- Write CSV data to InfluxDB
- CSV Annotations
- Write raw query results back to InfluxDB
- Inject annotation headers
- Use files to inject headers
- Skip annotation headers
- Process input as CSV
- Specify CSV character encoding
- Skip rows with errors
- Advanced examples
- Annotation shorthand
- Replace column header with annotation shorthand
- Ignore columns
- Use alternate numeric formats
- Use alternate boolean format
- Use different timestamp formats
- Related articles
Write CSV data to InfluxDB
Use the influx write
command to write CSV data to InfluxDB. Include Extended annotated CSV annotations to specify how the data translates into line protocol. Include annotations in the CSV file or inject them using the --header
flag of the influx write
command.
On this page
- CSV Annotations
- Inject annotation headers
- Skip annotation headers
- Process input as CSV
- Specify CSV character encoding
- Skip rows with errors
- Advanced examples
Example write command
influx write -b example-bucket -f path/to/example.csv
example.csv
#datatype measurement,tag,double,dateTime:RFC3339
m,host,used_percent,time
mem,host1,64.23,2020-01-01T00:00:00Z
mem,host2,72.01,2020-01-01T00:00:00Z
mem,host1,62.61,2020-01-01T00:00:10Z
mem,host2,72.98,2020-01-01T00:00:10Z
mem,host1,63.40,2020-01-01T00:00:20Z
mem,host2,73.77,2020-01-01T00:00:20Z
Resulting line protocol
mem,host=host1 used_percent=64.23 1577836800000000000
mem,host=host2 used_percent=72.01 1577836800000000000
mem,host=host1 used_percent=62.61 1577836810000000000
mem,host=host2 used_percent=72.98 1577836810000000000
mem,host=host1 used_percent=63.40 1577836820000000000
mem,host=host2 used_percent=73.77 1577836820000000000
To test the CSV to line protocol conversion process, use the influx write dryrun
command to print the resulting line protocol to stdout rather than write to InfluxDB.
“too many open files” errors
When attempting to write large amounts of CSV data into InfluxDB, you might see an error like the following:
Error: Failed to write data: unexpected error writing points to database: [shard <#>] fcntl: too many open files.
To fix this error, run the following command to increase the number of open files allowed by the OS (works on both Linux and MacOS):
ulimit -n 10000
CSV Annotations
Use CSV annotations to specify which element of line protocol each CSV column represents and how to format the data. CSV annotations are rows at the beginning of a CSV file that describe column properties.
The influx write
command supports Extended annotated CSV which provides options for specifying how CSV data should be converted into line protocol and how data is formatted.
To write data to InfluxDB, data must include the following:
- measurement
- field set
- timestamp (Optional but recommended)
- tag set (Optional)
Use CSV annotations to specify which of these elements each column represents.
Write raw query results back to InfluxDB
Flux returns query results in Annotated CSV. These results include all annotations necessary to write the data back to InfluxDB.
Inject annotation headers
If the CSV data you want to write to InfluxDB does not contain the annotations required to properly convert the data to line protocol, use the --header
flag to inject annotation rows into the CSV data.
influx write -b example-bucket \
-f path/to/example.csv \
--header "#constant measurement,birds" \
--header "#datatype dataTime:2006-01-02,long,tag"
example.csv
date,sighted,loc
2020-01-01,12,Boise
2020-06-01,78,Boise
2020-01-01,54,Seattle
2020-06-01,112,Seattle
2020-01-01,9,Detroit
2020-06-01,135,Detroit
Resulting line protocol
birds,loc=Boise sighted=12i 1577836800000000000
birds,loc=Boise sighted=78i 1590969600000000000
birds,loc=Seattle sighted=54i 1577836800000000000
birds,loc=Seattle sighted=112i 1590969600000000000
birds,loc=Detroit sighted=9i 1577836800000000000
birds,loc=Detroit sighted=135i 1590969600000000000
Use files to inject headers
The influx write
command supports importing multiple files in a single command. Include annotations and header rows in their own file and import them with the write command. Files are read in the order in which they’re provided.
influx write -b example-bucket \
-f path/to/headers.csv \
-f path/to/example.csv
headers.csv
#constant measurement,birds
#datatype dataTime:2006-01-02,long,tag
example.csv
date,sighted,loc
2020-01-01,12,Boise
2020-06-01,78,Boise
2020-01-01,54,Seattle
2020-06-01,112,Seattle
2020-01-01,9,Detroit
2020-06-01,135,Detroit
Resulting line protocol
birds,loc=Boise sighted=12i 1577836800000000000
birds,loc=Boise sighted=78i 1590969600000000000
birds,loc=Seattle sighted=54i 1577836800000000000
birds,loc=Seattle sighted=112i 1590969600000000000
birds,loc=Detroit sighted=9i 1577836800000000000
birds,loc=Detroit sighted=135i 1590969600000000000
Skip annotation headers
Some CSV data may include header rows that conflict with or lack the annotations necessary to write CSV data to InfluxDB. Use the --skipHeader
flag to specify the number of rows to skip at the beginning of the CSV data.
influx write -b example-bucket \
-f path/to/example.csv \
--skipHeader=2
You can then inject new header rows to rename columns and provide the necessary annotations.
Process input as CSV
The influx write
command automatically processes files with the .csv
extension as CSV files. If your CSV file uses a different extension, use the --format
flat to explicitly declare the format of the input file.
influx write -b example-bucket \
-f path/to/example.txt \
--format csv
The influx write
command assumes all input files are line protocol unless they include the .csv
extension or you declare the csv
.
Specify CSV character encoding
The influx write
command assumes CSV files contain UTF-8 encoded characters. If your CSV data uses different character encoding, specify the encoding with the --encoding
.
influx write -b example-bucket \
-f path/to/example.csv \
--encoding "UTF-16"
Skip rows with errors
If a row in your CSV data is missing an element required to write to InfluxDB or data is incorrectly formatted, when processing the row, the influx write
command returns an error and cancels the write request. To skip rows with errors, use the --skipRowOnError
flag.
influx write -b example-bucket \
-f path/to/example.csv \
--skipRowOnError
Skipped rows are ignored and are not written to InfluxDB.
Use the --error-file
flag to record errors to a file. The error file identifies all rows that cannot be imported and includes error messages for debugging. For example:
cpu,1.1
Advanced examples
- Define constants
- Annotation shorthand
- Ignore columns
- Use alternate numeric formats
- Use alternate boolean format
- Use different timestamp formats
Define constants
Use the Extended annotated CSV #constant
annotation to add a column and value to each row in the CSV data.
CSV with constants
#constant measurement,example
#constant tag,source,csv
#datatype long,dateTime:RFC3339
count,time
1,2020-01-01T00:00:00Z
4,2020-01-02T00:00:00Z
9,2020-01-03T00:00:00Z
18,2020-01-04T00:00:00Z
Resulting line protocol
example,source=csv count=1 1577836800000000000
example,source=csv count=4 1577923200000000000
example,source=csv count=9 1578009600000000000
example,source=csv count=18 1578096000000000000
Annotation shorthand
Extended annotated CSV supports annotation shorthand, which lets you define the column label, datatype, and default value in the column header.
CSV with annotation shorthand
m|measurement,count|long|0,time|dateTime:RFC3339
example,1,2020-01-01T00:00:00Z
example,4,2020-01-02T00:00:00Z
example,,2020-01-03T00:00:00Z
example,18,2020-01-04T00:00:00Z
Resulting line protocol
example count=1 1577836800000000000
example count=4 1577923200000000000
example count=0 1578009600000000000
example count=18 1578096000000000000
Replace column header with annotation shorthand
It’s possible to replace the column header row in a CSV file with annotation shorthand without modifying the CSV file. This lets you define column data types and default values while writing to InfluxDB.
To replace an existing column header row with annotation shorthand:
- Use the
--skipHeader
flag to ignore the existing column header row. - Use the
--header
flag to inject a new column header row that uses annotation shorthand.
--skipHeader
is the same as --skipHeader=1
.
influx write -b example-bucket \
-f example.csv \
--skipHeader
--header="m|measurement,count|long|0,time|dateTime:RFC3339"
Unmodified example.csv
m,count,time
example,1,2020-01-01T00:00:00Z
example,4,2020-01-02T00:00:00Z
example,,2020-01-03T00:00:00Z
example,18,2020-01-04T00:00:00Z
Resulting line protocol
example count=1i 1577836800000000000
example count=4i 1577923200000000000
example count=0i 1578009600000000000
example count=18i 1578096000000000000
Ignore columns
Use the Extended annotated CSV #datatype ignored
annotation to ignore columns when writing CSV data to InfluxDB.
CSV data with ignored column
#datatype measurement,long,time,ignored
m,count,time,foo
example,1,2020-01-01T00:00:00Z,bar
example,4,2020-01-02T00:00:00Z,bar
example,9,2020-01-03T00:00:00Z,baz
example,18,2020-01-04T00:00:00Z,baz
Resulting line protocol
m count=1i 1577836800000000000
m count=4i 1577923200000000000
m count=9i 1578009600000000000
m count=18i 1578096000000000000
Use alternate numeric formats
If your CSV data contains numeric values that use a non-default fraction separator (.
) or contain group separators, define your numeric format in the double
, long
, and unsignedLong
datatype annotations.
If your numeric format separators include a comma (,
), wrap the column annotation in double quotes (""
) to prevent the comma from being parsed as a column separator or delimiter. You can also define a custom column separator.
CSV with non-default float values
#datatype measurement,"double:.,",dateTime:RFC3339
m,lbs,time
example,"1,280.7",2020-01-01T00:00:00Z
example,"1,352.5",2020-01-02T00:00:00Z
example,"1,862.8",2020-01-03T00:00:00Z
example,"2,014.9",2020-01-04T00:00:00Z
Resulting line protocol
example lbs=1280.7 1577836800000000000
example lbs=1352.5 1577923200000000000
example lbs=1862.8 1578009600000000000
example lbs=2014.9 1578096000000000000
CSV with non-default integer values
#datatype measurement,"long:.,",dateTime:RFC3339
m,lbs,time
example,"1,280.0",2020-01-01T00:00:00Z
example,"1,352.0",2020-01-02T00:00:00Z
example,"1,862.0",2020-01-03T00:00:00Z
example,"2,014.9",2020-01-04T00:00:00Z
Resulting line protocol
example lbs=1280i 1577836800000000000
example lbs=1352i 1577923200000000000
example lbs=1862i 1578009600000000000
example lbs=2014i 1578096000000000000
CSV with non-default uinteger values
#datatype measurement,"unsignedLong:.,",dateTime:RFC3339
m,lbs,time
example,"1,280.0",2020-01-01T00:00:00Z
example,"1,352.0",2020-01-02T00:00:00Z
example,"1,862.0",2020-01-03T00:00:00Z
example,"2,014.9",2020-01-04T00:00:00Z
Resulting line protocol
example lbs=1280u 1577836800000000000
example lbs=1352u 1577923200000000000
example lbs=1862u 1578009600000000000
example lbs=2014u 1578096000000000000
Use alternate boolean format
Line protocol supports only specific boolean values. If your CSV data contains boolean values that line protocol does not support, define your boolean format in the boolean
datatype annotation.
CSV with non-default boolean values
sep=;
#datatype measurement,"boolean:y,Y,1:n,N,0",dateTime:RFC3339
m,verified,time
example,y,2020-01-01T00:00:00Z
example,n,2020-01-02T00:00:00Z
example,1,2020-01-03T00:00:00Z
example,N,2020-01-04T00:00:00Z
Resulting line protocol
example verified=true 1577836800000000000
example verified=false 1577923200000000000
example verified=true 1578009600000000000
example verified=false 1578096000000000000
Use different timestamp formats
The influx write
command automatically detects RFC3339 and number formatted timestamps when converting CSV to line protocol. If using a different timestamp format, define your timestamp format in the dateTime
datatype annotation.
CSV with non-default timestamps
#datatype measurement,dateTime:2006-01-02,field
m,time,lbs
example,2020-01-01,1280.7
example,2020-01-02,1352.5
example,2020-01-03,1862.8
example,2020-01-04,2014.9
Resulting line protocol
example lbs=1280.7 1577836800000000000
example lbs=1352.5 1577923200000000000
example lbs=1862.8 1578009600000000000
example lbs=2014.9 1578096000000000000