深度学习在图像领域的应用

随着深度学习近几年的火热发展,在计算机视觉,图像理解方向上,应用越来越广泛。我们总结了在视觉领域的一些方向上基于深度学习的优秀算法。包括物体检测、物体识别、人脸世界、分割、跟踪、边缘检测、图像复原(去雨、去雾)、图像编辑等。

检测

1. 单一物体检测

MTCNN: https://github.com/kpzhang93/MTCNN_face_detection_alignment

Cascade-CNN: https://github.com/anson0910/CNN_face_detection

2. 通用物体检测

Faster-RCNN: https://github.com/rbgirshick/py-faster-rcnn

YOLO: https://github.com/pjreddie/darknet

SSD: https://github.com/FreeApe/VGG-or-MobileNet-SSD

RetinaNet: https://github.com/fizyr/keras-retinanet

分类

VGG: https://github.com/ry/tensorflow-vgg16

GoogLenet: https://github.com/n3011/Inception_v3_GoogLeNet

Resnet: https://github.com/ry/tensorflow-resnet

Mobilenet: https://github.com/shicai/MobileNet-Caffe

Shufflenet: https://github.com/anlongstory/ShuffleNet_V2-caffe

MNasNet: https://github.com/zeusees/Mnasnet-Pretrained-Model

识别

1. 人脸识别

Deepface: https://github.com/RiweiChen/DeepFace

Normface: https://github.com/happynear/NormFace

Insightface: https://github.com/deepinsight/insightface

2. 文字识别

DeepOCR: https://github.com/JinpengLI/deep_ocr

CTPN: https://github.com/tianzhi0549/CTPN (文字定位)

DenseNet + CTC: https://github.com/YCG09/chinese_ocr

YOLOv3 + CRNN : https://github.com/chineseocr/chineseocr

跟踪

1.

2.

分割

Unet: https://github.com/zhixuhao/unet

mask-rcnn: https://github.com/matterport/Mask_RCNN

边缘检测

HED: https://github.com/s9xie/hed

RCF: https://github.com/yun-liu/rcf

图像复原

1. 去雨

DDN: https://github.com/XMU-smartdsp/Removing_Rain

CGAN: https://github.com/hezhangsprinter/ID-CGAN

DID-MDN: https://github.com/hezhangsprinter/DID-MDN

DeRaindrop: https://github.com/rui1996/DeRaindrop

2. 去雾

MSCNN: https://github.com/dishank-b/MSCNN-Dehazing-Tensorflow

DehazeNet: https://github.com/caibolun/DehazeNet

3. 超分辨率

SRCNN: https://github.com/tegg89/SRCNN-Tensorflow

EDSR: https://github.com/thstkdgus35/EDSR-PyTorch (https://blog.csdn.net/xjp_xujiping/article/details/81986020)

4.图像单反化

DPED: https://github.com/aiff22/DPED

总结

目前深度学习技术在计算机视觉算法、图像处理算法运用越来越广泛,这里把我们在工程中常用的一些网络加以整理总结,方便后面的使用者学习。在很多细分领域,深度学习同样发挥了巨大作用,例如医学领域,自然语言处理等,由于这些领域专业性更强,通常是多学科的结合,我们应用不多,没办法为大家提供详细的研究材料,大家见谅。

参考资料