4.7 信号量
概述
基本概念
信号量(Semaphore)是一种实现任务间通信的机制,实现任务之间同步或临界资源的互斥访问。常用于协助一组相互竞争的任务来访问临界资源。
在多任务系统中,各任务之间需要同步或互斥实现临界资源的保护,信号量功能可以为用户提供这方面的支持。
通常一个信号量的计数值用于对应有效的资源数,表示剩下的可被占用的互斥资源数。其值的含义分两种情况:
0,表示没有积累下来的Post操作,且有可能有在此信号量上阻塞的任务。
正值,表示有一个或多个Post下来的释放操作。
以同步为目的的信号量和以互斥为目的的信号量在使用有如下不同:
用作互斥时,信号量创建后记数是满的,在需要使用临界资源时,先取信号量,使其变空,这样其他任务需要使用临界资源时就会因为无法取到信号量而阻塞,从而保证了临界资源的安全。
用作同步时,信号量在创建后被置为空,任务1取信号量而阻塞,任务2在某种条件发生后,释放信号量,于是任务1得以进入READY或RUNNING态,从而达到了两个任务间的同步。
运作机制
信号量控制块
/**
* @ingroup los_sem
* Semaphore control structure.
*/
typedef struct
{
UINT16 usSemStat; /**是否使用标志位*/
UINT16 uwSemCount; /**信号量索引号*/
UINT16 usMaxSemCount; /**信号量最大数*/
UINT16 usSemID; /**信号量计数*/
LOS_DL_LIST stSemList; /**挂接阻塞于该信号量的任务*/
}SEM_CB_S;
信号量运作原理
信号量初始化,为配置的N个信号量申请内存(N值可以由用户自行配置,受内存限制),并把所有的信号量初始化成未使用,并加入到未使用链表中供系统使用。
信号量创建,从未使用的信号量链表中获取一个信号量资源,并设定初值。
信号量申请,若其计数器值大于0,则直接减1返回成功。否则任务阻塞,等待其它任务释放该信号量,等待的超时时间可设定。当任务被一个信号量阻塞时,将该任务挂到信号量等待任务队列的队尾。
信号量释放,若没有任务等待该信号量,则直接将计数器加1返回。否则唤醒该信号量等待任务队列上的第一个任务。
信号量删除,将正在使用的信号量置为未使用信号量,并挂回到未使用链表。
信号量允许多个任务在同一时刻访问同一资源,但会限制同一时刻访问此资源的最大任务数目。访问同一资源的任务数达到该资源的最大数量时,会阻塞其他试图获取该资源的任务,直到有任务释放该信号量。
信号量运作示意图
开发指导
使用场景
信号量是一种非常灵活的同步方式,可以运用在多种场合中,实现锁、同步、资源计数等功能,也能方便的用于任务与任务,中断与任务的同步中。
功能
Huawei LiteOS 系统中的信号量模块为用户提供下面几种功能。
功能分类 | 接口名 | 描述 |
---|---|---|
信号量的创建和删除 | LOS_SemCreate | 创建信号量 |
LOS_BinarySemCreate | 创建二进制信号量 | |
LOS_SemDelete | 删除指定的信号量 | |
信号量的申请和释放 | LOS_SemPend | 申请指定的信号量 |
LOS_SemPost | 释放指定的信号量 |
开发流程
信号量的开发典型流程:
创建信号量LOS_SemCreate。
申请信号量LOS_SemPend。
信号量有三种申请模式:无阻塞模式、永久阻塞模式、定时阻塞模式
无阻塞模式:任务需要申请信号量,若当前信号量的任务数没有到信号量设定的上限,则申请成功。否则,立即返回申请失败
永久阻塞模式:任务需要申请信号量,若当前信号量的任务数没有到信号量设定的上限,则申请成功。否则,该任务进入阻塞态,系统切换到就绪任务中优先级最高者继续执行。任务进入阻塞态后,直到有其他任务释放该信号量,阻塞任务才会重新得以执行
定时阻塞模式:任务需要申请信号量,若当前信号量的任务数没有到信号量设定的上限,则申请成功。否则,该任务进入阻塞态,系统切换到就绪任务中优先级最高者继续执行。任务进入阻塞态后,指定时间超时前有其他任务释放该信号量,或者用户指定时间超时后,阻塞任务才会重新得以执行
释放信号量LOS_SemPost。
如果有任务阻塞于指定信号量,则唤醒该信号量阻塞队列上的第一个任务。该任务进入就绪态,并进行调度
如果没有任务阻塞于指定信号量,释放信号量成功
删除信号量LOS_SemDelete。
信号量错误码
对可能导致信号量操作失败的情况,包括创建信号量、申请信号量、释放信号量、删除信号量等,均需要返回对应的错误码,以便快速定位错误原因。
序号 | 定义 | 实际数值 | 描述 | 参考解决方案 |
---|---|---|---|---|
1 | LOS_ERRNO_SEM_NO_MEMORY | 0x02000700 | 内存空间不足 | 分配更大的内存分区 |
2 | LOS_ERRNO_SEM_INVALID | 0x02000701 | 非法传参 | 改变传数为合法值 |
3 | LOS_ERRNO_SEM_PTR_NULL | 0x02000702 | 传入空指针 | 传入合法指针 |
4 | LOS_ERRNO_SEM_ALL_BUSY | 0x02000703 | 信号量控制块不可用 | 释放资源信号量资源 |
5 | LOS_ERRNO_SEM_UNAVAILABLE | 0x02000704 | 定时时间非法 | 传入正确的定时时间 |
6 | LOS_ERRNO_SEM_PEND_INTERR | 0x02000705 | 中断期间非法调用LOS_SemPend | 中断期间禁止调用LOS_SemPend |
7 | LOS_ERRNO_SEM_PEND_IN_LOCK | 0x02000706 | 任务被锁,无法获得信号量 | 在任务被锁时,不能调用LOS_SemPend |
8 | LOS_ERRNO_SEM_TIMEOUT | 0x02000707 | 获取信号量时间超时 | 将时间设置在合理范围内 |
9 | LOS_ERRNO_SEM_OVERFLOW | 0x02000708 | 信号量允许pend次数超过最大值 | 传入合法的值 |
10 | LOS_ERRNO_SEM_PENDED | 0x02000709 | 等待信号量的任务队列不为空 | 唤醒所有等待该型号量的任务后删除该信号量 |
错误码定义: 错误码是一个32位的存储单元,31~24位表示错误等级,23~16位表示错误码标志,15~8位代表错误码所属模块,7~0位表示错误码序号,如下
#define LOS_ERRNO_OS_NORMAL(MID,ERRNO) \
(LOS_ERRTYPE_NORMAL | LOS_ERRNO_OS_ID | ((UINT32)(MID) << 8) | (ERRNO))
LOS_ERRTYPE_NORMAL :Define the error level as critical
LOS_ERRNO_OS_ID :OS error code flag.
MID:OS_MOUDLE_ID
ERRNO:error ID number
例如:
LOS_ERRNO_SEM_NO_MEMORY LOS_ERRNO_OS_ERROR(LOS_MOD_SEM, 0x00))
平台差异性
无。
注意事项
- 由于中断不能被阻塞,因此在申请信号量时,阻塞模式不能在中断中使用。
编程实例
实例描述
本实例实现如下功能:
测试任务Example_TaskEntry创建一个信号量,锁任务调度,创建两个任务Example_SemTask1、Example_SemTask2,Example_SemTask2优先级高于Example_SemTask1,两个任务中申请同一信号量,解锁任务调度后两任务阻塞,测试任务Example_TaskEntry释放信号量。
Example_SemTask2得到信号量,被调度,然后任务休眠20Tick,Example_SemTask2延迟,Example_SemTask1被唤醒。
Example_SemTask1定时阻塞模式申请信号量,等待时间为10Tick,因信号量仍被Example_SemTask2持有,Example_SemTask1挂起,10Tick后仍未得到信号量,Example_SemTask1被唤醒,试图以永久阻塞模式申请信号量,Example_SemTask1挂起。
20Tick后Example_SemTask2唤醒, 释放信号量后,Example_SemTask1得到信号量被调度运行,最后释放信号量。
Example_SemTask1执行完,40Tick后任务Example_TaskEntry被唤醒。
编程示例
前提条件:
在los_config.h中,将LOSCFG_BASE_IPC_SEM配置为YES。
配置用户定义的LOSCFG_BASE_IPC_SEM_LIMIT最大的信号量数,如1024。
代码实现如下:
/*测试任务优先级*/
#define TASK_PRIO_TEST 5
/*任务PID*/
static UINT32 g_TestTaskID01,g_TestTaskID02;
/*信号量结构体ID*/
static UINT32 g_usSemID;
static VOID Example_SemTask1(void)
{
UINT32 uwRet;
dprintf("Example_SemTask1 try get sem g_usSemID ,timeout 10 ticks.\n");
/*定时阻塞模式申请信号量,定时时间为10Tick*/
uwRet = LOS_SemPend(g_usSemID, 10);
/*申请到信号量*/
if(LOS_OK == uwRet)
{
LOS_SemPost(g_usSemID);
return;
}
/*定时时间到,未申请到信号量*/
if(LOS_ERRNO_SEM_TIMEOUT == uwRet)
{
dprintf("Example_SemTask1 timeout and try get sem g_usSemID wait forever.\n");
/*永久阻塞模式申请信号量,获取不到时程序阻塞,不会返回*/
uwRet = LOS_SemPend(g_usSemID, LOS_WAIT_FOREVER);
if(LOS_OK == uwRet)
{
dprintf("Example_SemTask1 wait_forever and got sem g_usSemID success.\n");
LOS_SemPost(g_usSemID);
uwRet = LOS_InspectStatusSetByID(LOS_INSPECT_SEM,LOS_INSPECT_STU_SUCCESS);
if (LOS_OK != uwRet)
{
dprintf("Set Inspect Status Err\n");
}
return;
}
}
return;
}
static VOID Example_SemTask2(void)
{
UINT32 uwRet;
dprintf("Example_SemTask2 try get sem g_usSemID wait forever.\n");
/*永久阻塞模式申请信号量*/
uwRet = LOS_SemPend(g_usSemID, LOS_WAIT_FOREVER);
if(LOS_OK == uwRet)
{
dprintf("Example_SemTask2 get sem g_usSemID and then delay 20ticks .\n");
}
/*任务休眠20 Tick*/
LOS_TaskDelay(20);
dprintf("Example_SemTask2 post sem g_usSemID .\n");
/*释放信号量*/
LOS_SemPost(g_usSemID);
return;
}
UINT32 Example_Semphore(VOID)
{
UINT32 uwRet = LOS_OK;
TSK_INIT_PARAM_S stTask1;
TSK_INIT_PARAM_S stTask2;
/*创建信号量*/
LOS_SemCreate(0,&g_usSemID);
/*锁任务调度*/
LOS_TaskLock();
/*创建任务1*/
memset(&stTask1, 0, sizeof(TSK_INIT_PARAM_S));
stTask1.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_SemTask1;
stTask1.pcName = "MutexTsk1";
stTask1.uwStackSize = LOSCFG_BASE_CORE_TSK_IDLE_STACK_SIZE;
stTask1.usTaskPrio = TASK_PRIO_TEST;
uwRet = LOS_TaskCreate(&g_TestTaskID01, &stTask1);
if(uwRet != LOS_OK)
{
dprintf("task1 create failed .\n");
return LOS_NOK;
}
/*创建任务2*/
memset(&stTask2, 0, sizeof(TSK_INIT_PARAM_S));
stTask2.pfnTaskEntry = (TSK_ENTRY_FUNC)Example_SemTask2;
stTask2.pcName = "MutexTsk2";
stTask2.uwStackSize = LOSCFG_BASE_CORE_TSK_IDLE_STACK_SIZE;
stTask2.usTaskPrio = (TASK_PRIO_TEST - 1);
uwRet = LOS_TaskCreate(&g_TestTaskID02, &stTask2);
if(uwRet != LOS_OK)
{
dprintf("task2 create failed .\n");
/*删除任务1*/
if(LOS_OK != LOS_TaskDelete(g_TestTaskID01))
{
dprintf("task1 delete failed .\n");
}
return LOS_NOK;
}
/*解锁任务调度*/
LOS_TaskUnlock();
uwRet = LOS_SemPost(g_usSemID);
/*任务休眠40 Tick*/
LOS_TaskDelay(40);
/*删除信号量*/
LOS_SemDelete(g_usSemID);
return uwRet;
}
结果验证
编译运行得到的结果为: