Elasticsearch Connector
This connector provides sinks that can request document actions to anElasticsearch Index. To use this connector, add oneof the following dependencies to your project, depending on the versionof the Elasticsearch installation:
Maven Dependency | Supported since | Elasticsearch version |
---|---|---|
flink-connector-elasticsearch2_2.11 | 1.0.0 | 2.x |
flink-connector-elasticsearch5_2.11 | 1.3.0 | 5.x |
flink-connector-elasticsearch6_2.11 | 1.6.0 | 6.x |
flink-connector-elasticsearch7_2.11 | 1.10.0 | 7 and later versions |
Note that the streaming connectors are currently not part of the binarydistribution. See here for informationabout how to package the program with the libraries for cluster execution.
Installing Elasticsearch
Instructions for setting up an Elasticsearch cluster can be foundhere.Make sure to set and remember a cluster name. This must be set whencreating an ElasticsearchSink
for requesting document actions against your cluster.
Elasticsearch Sink
The ElasticsearchSink
uses a TransportClient
(before 6.x) or RestHighLevelClient
(starting with 6.x) to communicate with anElasticsearch cluster.
The example below shows how to configure and create a sink:
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch5.ElasticsearchSink;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;
import java.net.InetAddress;
import java.net.InetSocketAddress;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
DataStream<String> input = ...;
Map<String, String> config = new HashMap<>();
config.put("cluster.name", "my-cluster-name");
// This instructs the sink to emit after every element, otherwise they would be buffered
config.put("bulk.flush.max.actions", "1");
List<InetSocketAddress> transportAddresses = new ArrayList<>();
transportAddresses.add(new InetSocketAddress(InetAddress.getByName("127.0.0.1"), 9300));
transportAddresses.add(new InetSocketAddress(InetAddress.getByName("10.2.3.1"), 9300));
input.addSink(new ElasticsearchSink<>(config, transportAddresses, new ElasticsearchSinkFunction<String>() {
public IndexRequest createIndexRequest(String element) {
Map<String, String> json = new HashMap<>();
json.put("data", element);
return Requests.indexRequest()
.index("my-index")
.type("my-type")
.source(json);
}
@Override
public void process(String element, RuntimeContext ctx, RequestIndexer indexer) {
indexer.add(createIndexRequest(element));
}
}));
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction;
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer;
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink;
import org.apache.http.HttpHost;
import org.elasticsearch.action.index.IndexRequest;
import org.elasticsearch.client.Requests;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
DataStream<String> input = ...;
List<HttpHost> httpHosts = new ArrayList<>();
httpHosts.add(new HttpHost("127.0.0.1", 9200, "http"));
httpHosts.add(new HttpHost("10.2.3.1", 9200, "http"));
// use a ElasticsearchSink.Builder to create an ElasticsearchSink
ElasticsearchSink.Builder<String> esSinkBuilder = new ElasticsearchSink.Builder<>(
httpHosts,
new ElasticsearchSinkFunction<String>() {
public IndexRequest createIndexRequest(String element) {
Map<String, String> json = new HashMap<>();
json.put("data", element);
return Requests.indexRequest()
.index("my-index")
.type("my-type")
.source(json);
}
@Override
public void process(String element, RuntimeContext ctx, RequestIndexer indexer) {
indexer.add(createIndexRequest(element));
}
}
);
// configuration for the bulk requests; this instructs the sink to emit after every element, otherwise they would be buffered
esSinkBuilder.setBulkFlushMaxActions(1);
// provide a RestClientFactory for custom configuration on the internally created REST client
esSinkBuilder.setRestClientFactory(
restClientBuilder -> {
restClientBuilder.setDefaultHeaders(...)
restClientBuilder.setMaxRetryTimeoutMillis(...)
restClientBuilder.setPathPrefix(...)
restClientBuilder.setHttpClientConfigCallback(...)
}
);
// finally, build and add the sink to the job's pipeline
input.addSink(esSinkBuilder.build());
import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.api.datastream.DataStream
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer
import org.apache.flink.streaming.connectors.elasticsearch5.ElasticsearchSink
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests
import java.net.InetAddress
import java.net.InetSocketAddress
import java.util.ArrayList
import java.util.HashMap
import java.util.List
import java.util.Map
val input: DataStream[String] = ...
val config = new java.util.HashMap[String, String]
config.put("cluster.name", "my-cluster-name")
// This instructs the sink to emit after every element, otherwise they would be buffered
config.put("bulk.flush.max.actions", "1")
val transportAddresses = new java.util.ArrayList[InetSocketAddress]
transportAddresses.add(new InetSocketAddress(InetAddress.getByName("127.0.0.1"), 9300))
transportAddresses.add(new InetSocketAddress(InetAddress.getByName("10.2.3.1"), 9300))
input.addSink(new ElasticsearchSink(config, transportAddresses, new ElasticsearchSinkFunction[String] {
def createIndexRequest(element: String): IndexRequest = {
val json = new java.util.HashMap[String, String]
json.put("data", element)
return Requests.indexRequest()
.index("my-index")
.type("my-type")
.source(json)
}
}))
import org.apache.flink.api.common.functions.RuntimeContext
import org.apache.flink.streaming.api.datastream.DataStream
import org.apache.flink.streaming.connectors.elasticsearch.ElasticsearchSinkFunction
import org.apache.flink.streaming.connectors.elasticsearch.RequestIndexer
import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink
import org.apache.http.HttpHost
import org.elasticsearch.action.index.IndexRequest
import org.elasticsearch.client.Requests
import java.util.ArrayList
import java.util.List
val input: DataStream[String] = ...
val httpHosts = new java.util.ArrayList[HttpHost]
httpHosts.add(new HttpHost("127.0.0.1", 9200, "http"))
httpHosts.add(new HttpHost("10.2.3.1", 9200, "http"))
val esSinkBuilder = new ElasticsearchSink.Builder[String](
httpHosts,
new ElasticsearchSinkFunction[String] {
def process(element: String, ctx: RuntimeContext, indexer: RequestIndexer) {
val json = new java.util.HashMap[String, String]
json.put("data", element)
val rqst: IndexRequest = Requests.indexRequest
.index("my-index")
.`type`("my-type")
.source(json)
indexer.add(rqst)
}
}
)
// configuration for the bulk requests; this instructs the sink to emit after every element, otherwise they would be buffered
esSinkBuilder.setBulkFlushMaxActions(1)
// provide a RestClientFactory for custom configuration on the internally created REST client
esSinkBuilder.setRestClientFactory(
restClientBuilder -> {
restClientBuilder.setDefaultHeaders(...)
restClientBuilder.setMaxRetryTimeoutMillis(...)
restClientBuilder.setPathPrefix(...)
restClientBuilder.setHttpClientConfigCallback(...)
}
)
// finally, build and add the sink to the job's pipeline
input.addSink(esSinkBuilder.build)
For Elasticsearch versions that still uses the now deprecated TransportClient
to communicatewith the Elasticsearch cluster (i.e., versions equal or below 5.x), note how a Map
of String
sis used to configure the ElasticsearchSink
. This config map will be directlyforwarded when creating the internally used TransportClient
.The configuration keys are documented in the Elasticsearch documentationhere.Especially important is the cluster.name
parameter that must correspond tothe name of your cluster.
For Elasticsearch 6.x and above, internally, the RestHighLevelClient
is used for cluster communication.By default, the connector uses the default configurations for the REST client. To have customconfiguration for the REST client, users can provide a RestClientFactory
implementation when setting up the ElasticsearchClient.Builder
that builds the sink.
Also note that the example only demonstrates performing a single indexrequest for each incoming element. Generally, the ElasticsearchSinkFunction
can be used to perform multiple requests of different types (ex.,DeleteRequest
, UpdateRequest
, etc.).
Internally, each parallel instance of the Flink Elasticsearch Sink usesa BulkProcessor
to send action requests to the cluster.This will buffer elements before sending them in bulk to the cluster. The BulkProcessor
executes bulk requests one at a time, i.e. there will be no two concurrentflushes of the buffered actions in progress.
Elasticsearch Sinks and Fault Tolerance
With Flink’s checkpointing enabled, the Flink Elasticsearch Sink guaranteesat-least-once delivery of action requests to Elasticsearch clusters. It doesso by waiting for all pending action requests in the BulkProcessor
at thetime of checkpoints. This effectively assures that all requests before thecheckpoint was triggered have been successfully acknowledged by Elasticsearch, beforeproceeding to process more records sent to the sink.
More details on checkpoints and fault tolerance are in the fault tolerance docs.
To use fault tolerant Elasticsearch Sinks, checkpointing of the topology needs to be enabled at the execution environment:
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.enableCheckpointing(5000); // checkpoint every 5000 msecs
val env = StreamExecutionEnvironment.getExecutionEnvironment()
env.enableCheckpointing(5000) // checkpoint every 5000 msecs
NOTE: Users can disable flushing if they wish to do so, by callingdisableFlushOnCheckpoint() on the created ElasticsearchSink. Be awarethat this essentially means the sink will not provide any strongdelivery guarantees anymore, even with checkpoint for the topology enabled.
Handling Failing Elasticsearch Requests
Elasticsearch action requests may fail due to a variety of reasons, includingtemporarily saturated node queue capacity or malformed documents to be indexed.The Flink Elasticsearch Sink allows the user to specify how requestfailures are handled, by simply implementing an ActionRequestFailureHandler
andproviding it to the constructor.
Below is an example:
DataStream<String> input = ...;
input.addSink(new ElasticsearchSink<>(
config, transportAddresses,
new ElasticsearchSinkFunction<String>() {...},
new ActionRequestFailureHandler() {
@Override
void onFailure(ActionRequest action,
Throwable failure,
int restStatusCode,
RequestIndexer indexer) throw Throwable {
if (ExceptionUtils.findThrowable(failure, EsRejectedExecutionException.class).isPresent()) {
// full queue; re-add document for indexing
indexer.add(action);
} else if (ExceptionUtils.findThrowable(failure, ElasticsearchParseException.class).isPresent()) {
// malformed document; simply drop request without failing sink
} else {
// for all other failures, fail the sink
// here the failure is simply rethrown, but users can also choose to throw custom exceptions
throw failure;
}
}
}));
val input: DataStream[String] = ...
input.addSink(new ElasticsearchSink(
config, transportAddresses,
new ElasticsearchSinkFunction[String] {...},
new ActionRequestFailureHandler {
@throws(classOf[Throwable])
override def onFailure(ActionRequest action,
Throwable failure,
int restStatusCode,
RequestIndexer indexer) {
if (ExceptionUtils.findThrowable(failure, EsRejectedExecutionException.class).isPresent()) {
// full queue; re-add document for indexing
indexer.add(action)
} else if (ExceptionUtils.findThrowable(failure, ElasticsearchParseException.class).isPresent()) {
// malformed document; simply drop request without failing sink
} else {
// for all other failures, fail the sink
// here the failure is simply rethrown, but users can also choose to throw custom exceptions
throw failure
}
}
}))
The above example will let the sink re-add requests that failed due toqueue capacity saturation and drop requests with malformed documents, withoutfailing the sink. For all other failures, the sink will fail. If a ActionRequestFailureHandler
is not provided to the constructor, the sink will fail for any kind of error.
Note that onFailure
is called for failures that still occur only after theBulkProcessor
internally finishes all backoff retry attempts.By default, the BulkProcessor
retries to a maximum of 8 attempts withan exponential backoff. For more information on the behaviour of theinternal BulkProcessor
and how to configure it, please see the following section.
By default, if a failure handler is not provided, the sink uses aNoOpFailureHandler
that simply fails for all kinds of exceptions. Theconnector also provides a RetryRejectedExecutionFailureHandler
implementationthat always re-add requests that have failed due to queue capacity saturation.
IMPORTANT: Re-adding requests back to the internal BulkProcessoron failures will lead to longer checkpoints, as the sink will alsoneed to wait for the re-added requests to be flushed when checkpointing.For example, when using RetryRejectedExecutionFailureHandler, checkpointswill need to wait until Elasticsearch node queues have enough capacity forall the pending requests. This also means that if re-added requests neversucceed, the checkpoint will never finish.
Configuring the Internal Bulk Processor
The internal BulkProcessor
can be further configured for its behaviouron how buffered action requests are flushed, by setting the following values inthe provided Map<String, String>
:
- bulk.flush.max.actions: Maximum amount of actions to buffer before flushing.
- bulk.flush.max.size.mb: Maximum size of data (in megabytes) to buffer before flushing.
- bulk.flush.interval.ms: Interval at which to flush regardless of the amount or size of buffered actions.
For versions 2.x and above, configuring how temporary request errors areretried is also supported:
- bulk.flush.backoff.enable: Whether or not to perform retries with backoff delay for a flush if one or more of its actions failed due to a temporary
EsRejectedExecutionException
. - bulk.flush.backoff.type: The type of backoff delay, either
CONSTANT
orEXPONENTIAL
- bulk.flush.backoff.delay: The amount of delay for backoff. For constant backoff, this is simply the delay between each retry. For exponential backoff, this is the initial base delay.
- bulk.flush.backoff.retries: The amount of backoff retries to attempt.
More information about Elasticsearch can be found here.
Packaging the Elasticsearch Connector into an Uber-Jar
For the execution of your Flink program, it is recommended to build aso-called uber-jar (executable jar) containing all your dependencies(see here for further information).
Alternatively, you can put the connector’s jar file into Flink’s lib/
folder to make it availablesystem-wide, i.e. for all job being run.