弹性调度是 ElasticJob 最重要的功能,也是这款产品名称的由来。 它是一款能够让任务通过分片进行水平扩展的任务处理系统。

分片

ElasticJob 中任务分片项的概念,使得任务可以在分布式的环境下运行,每台任务服务器只运行分配给该服务器的分片。 随着服务器的增加或宕机,ElasticJob 会近乎实时的感知服务器数量的变更,从而重新为分布式的任务服务器分配更加合理的任务分片项,使得任务可以随着资源的增加而提升效率。

任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的服务器分别执行某一个或几个分片项。

举例说明,如果作业分为 4 片,用两台服务器执行,则每个服务器分到 2 片,分别负责作业的 50% 的负载,如下图所示。

分片作业

分片项

ElasticJob 并不直接提供数据处理的功能,而是将分片项分配至各个运行中的作业服务器,开发者需要自行处理分片项与业务的对应关系。 分片项为数字,始于 0 而终于分片总数减 1。

个性化分片参数

个性化参数可以和分片项匹配对应关系,用于将分片项的数字转换为更加可读的业务代码。

例如:按照地区水平拆分数据库,数据库 A 是北京的数据;数据库 B 是上海的数据;数据库 C 是广州的数据。 如果仅按照分片项配置,开发者需要了解 0 表示北京;1 表示上海;2 表示广州。 合理使用个性化参数可以让代码更可读,如果配置为 0=北京,1=上海,2=广州,那么代码中直接使用北京,上海,广州的枚举值即可完成分片项和业务逻辑的对应关系。

资源最大限度利用

ElasticJob 提供最灵活的方式,最大限度的提高执行作业的吞吐量。 当新增加作业服务器时,ElasticJob 会通过注册中心的临时节点的变化感知到新服务器的存在,并在下次任务调度的时候重新分片,新的服务器会承载一部分作业分片,如下图所示。

作业扩容

将分片项设置为大于服务器的数量,最好是大于服务器倍数的数量,作业将会合理的利用分布式资源,动态的分配分片项。

例如:3 台服务器,分成 10 片,则分片项分配结果为服务器 A = 0,1,2,9;服务器 B = 3,4,5;服务器 C = 6,7,8。 如果服务器 C 崩溃,则分片项分配结果为服务器 A = 0,1,2,3,4; 服务器 B = 5,6,7,8,9。 在不丢失分片项的情况下,最大限度的利用现有资源提高吞吐量。

高可用

当作业服务器在运行中宕机时,注册中心同样会通过临时节点感知,并将在下次运行时将分片转移至仍存活的服务器,以达到作业高可用的效果。 本次由于服务器宕机而未执行完的作业,则可以通过失效转移的方式继续执行。如下图所示。

作业高可用

将分片总数设置为 1,并使用多于 1 台的服务器执行作业,作业将会以 1 主 n 从的方式执行。 一旦执行作业的服务器宕机,等待执行的服务器将会在下次作业启动时替补执行。开启失效转移功能效果更好,如果本次作业在执行过程中宕机,备机会立即替补执行。

ElasticJob-Lite 实现原理

ElasticJob-Lite 并无作业调度中心节点,而是基于部署作业框架的程序在到达相应时间点时各自触发调度。 注册中心仅用于作业注册和监控信息存储。而主作业节点仅用于处理分片和清理等功能。

弹性分布式实现

  • 第一台服务器上线触发主服务器选举。主服务器一旦下线,则重新触发选举,选举过程中阻塞,只有主服务器选举完成,才会执行其他任务。
  • 某作业服务器上线时会自动将服务器信息注册到注册中心,下线时会自动更新服务器状态。
  • 主节点选举,服务器上下线,分片总数变更均更新重新分片标记。
  • 定时任务触发时,如需重新分片,则通过主服务器分片,分片过程中阻塞,分片结束后才可执行任务。如分片过程中主服务器下线,则先选举主服务器,再分片。
  • 通过上一项说明可知,为了维持作业运行时的稳定性,运行过程中只会标记分片状态,不会重新分片。分片仅可能发生在下次任务触发前。
  • 每次分片都会按服务器IP排序,保证分片结果不会产生较大波动。
  • 实现失效转移功能,在某台服务器执行完毕后主动抓取未分配的分片,并且在某台服务器下线后主动寻找可用的服务器执行任务。

注册中心数据结构

注册中心在定义的命名空间下,创建作业名称节点,用于区分不同作业,所以作业一旦创建则不能修改作业名称,如果修改名称将视为新的作业。 作业名称节点下又包含5个数据子节点,分别是 config, instances, sharding, servers 和 leader。

config 节点

作业配置信息,以 YAML 格式存储。

instances 节点

作业运行实例信息,子节点是当前作业运行实例的主键。 作业运行实例主键由作业运行服务器的 IP 地址和 PID 构成。 作业运行实例主键均为临时节点,当作业实例上线时注册,下线时自动清理。注册中心监控这些节点的变化来协调分布式作业的分片以及高可用。 可在作业运行实例节点写入 TRIGGER 表示该实例立即执行一次。

sharding 节点

作业分片信息,子节点是分片项序号,从零开始,至分片总数减一。 分片项序号的子节点存储详细信息。每个分片项下的子节点用于控制和记录分片运行状态。 节点详细信息说明:

子节点名临时节点描述
instance执行该分片项的作业运行实例主键
running分片项正在运行的状态
仅配置 monitorExecution 时有效
failover如果该分片项被失效转移分配给其他作业服务器,则此节点值记录执行此分片的作业服务器 IP
misfire是否开启错过任务重新执行
disabled是否禁用此分片项

servers 节点

作业服务器信息,子节点是作业服务器的 IP 地址。 可在 IP 地址节点写入 DISABLED 表示该服务器禁用。 在新的云原生架构下,servers 节点大幅弱化,仅包含控制服务器是否可以禁用这一功能。 为了更加纯粹的实现作业核心,servers 功能未来可能删除,控制服务器是否禁用的能力应该下放至自动化部署系统。

leader 节点

作业服务器主节点信息,分为 election,sharding 和 failover 三个子节点。 分别用于主节点选举,分片和失效转移处理。

leader节点是内部使用的节点,如果对作业框架原理不感兴趣,可不关注此节点。

子节点名临时节点描述
election\instance主节点服务器IP地址
一旦该节点被删除将会触发重新选举
重新选举的过程中一切主节点相关的操作都将阻塞
election\latch主节点选举的分布式锁
为 curator 的分布式锁使用
sharding\necessary是否需要重新分片的标记
如果分片总数变化,或作业服务器节点上下线或启用/禁用,以及主节点选举,会触发设置重分片标记
作业在下次执行时使用主节点重新分片,且中间不会被打断
作业执行时不会触发分片
sharding\processing主节点在分片时持有的节点
如果有此节点,所有的作业执行都将阻塞,直至分片结束
主节点分片结束或主节点崩溃会删除此临时节点
failover\items\分片项一旦有作业崩溃,则会向此节点记录
当有空闲作业服务器时,会从此节点抓取需失效转移的作业项
failover\items\latch分配失效转移分片项时占用的分布式锁
为 curator 的分布式锁使用

流程图

作业启动

作业启动

作业执行

作业执行