Deeplearning Algorithms tutorial
谷歌的人工智能位于全球前列,在图像识别、语音识别、无人驾驶等技术上都已经落地。而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶、智能助手、图像识别等许多层面。苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别Mac。另外,腾讯的深度学习平台Mariana已支持了微信语音识别的语音输入法、语音开放平台、长按语音消息转文本等产品,在微信图像识别中开始应用。全球前十大科技公司全部发力人工智能理论研究和应用的实现,虽然入门艰难,但是一旦入门,高手也就在你的不远处! AI的开发离不开算法那我们就接下来开始学习算法吧! 回归方法是对数值型连续随机变量进行预测和建模的监督学习算法。其特点是标注的数据集具有数值型的目标变量。回归的目的是预测数值型的目标值。
常用的回归方法包括:
- 线性回归:使用超平面拟合数据集
- 最近邻算法:通过搜寻最相似的训练样本来预测新样本的值
- 决策树和回归树:将数据集分割为不同分支而实现分层学习
- 集成方法:组合多个弱学习算法构造一种强学习算法,如随机森林(RF)和梯度提升树(GBM)等
- 深度学习:使用多层神经网络学习复杂模型
本地散点平滑估计
本地散点平滑估计(Locally Estimated Scatterplot Smoothing,LOESS),事先不用确定参数数量,每次预测的时候,用指定的样本点周围的样本点进行临时训练,确定参数。
优缺点
优点:直接、快速 知名度高。
缺点:要求严格的假设,需要处理异常值。