Deeplearning Algorithms tutorial

谷歌的人工智能位于全球前列,在图像识别、语音识别、无人驾驶等技术上都已经落地。而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶、智能助手、图像识别等许多层面。苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别Mac。另外,腾讯的深度学习平台Mariana已支持了微信语音识别的语音输入法、语音开放平台、长按语音消息转文本等产品,在微信图像识别中开始应用。全球前十大科技公司全部发力人工智能理论研究和应用的实现,虽然入门艰难,但是一旦入门,高手也就在你的不远处! AI的开发离不开算法那我们就接下来开始学习算法吧!

关联规则学习(Association Rule Learning)

关联规则学习(英语:Association rule learning)是一种在大型数据库中发现变量之间的有趣性关系的方法。它的目的是利用一些有趣性的量度来识别数据库中发现的强规则。基于强规则的概念,Rakesh Agrawal等人引入了关联规则以发现由超市的POS系统记录的大批交易数据中产品之间的规律性。例如,从销售数据中发现的规则 {洋葱, 土豆}→{汉堡} 会表明如果顾客一起买洋葱和土豆,他们也有可能买汉堡的肉。此类信息可以作为做出促销定价或产品植入等营销活动决定的根据。除了上面购物篮分析中的例子以外, 关联规则如今还被用在许多应用领域中,包括网络用法挖掘、入侵检测、连续生产及生物信息学中。与序列挖掘相比,关联规则学习通常不考虑在事务中、或事务间的项目的顺序。

根据关联规则所处理的值的类型

如果考虑关联规则中的数据项是否出现,则这种关联规则是布尔关联规则(Boolean association rules)。例如上面的例子。 如果关联规则中的数据项是数量型的,这种关联规则是数量关联规则(quantitative association rules)。例如年龄(“20-25”)=>购买(“网球拍”),年龄是一个数量型的数据项。在这种关联规则中,一般将数量离散化(discretize)为区间。 根据关联规则所涉及的数据维数

如果关联规则各项只涉及一个维,则它是单维关联规则(single-dimensional association rules),例如购买(“网球拍”)=>购买(“网球”)只涉及“购买”一个维度。 如果关联规则涉及两个或两个以上维度,则它是多维关联规则(multi-dimensional association rules),例如年龄(“20-25”)=>购买(“网球拍”)涉及“年龄”和“购买”两个维度。 根据关联规则所涉及的抽象层次

如果不涉及不同层次的数据项,得到的是单层关联规则(single-level association rules)。 在不同抽象层次中挖掘出的关联规则称为广义关联规则(generalized association rules)。例如年龄(“20-25”)=>购买(“HEAD网球拍”)和年龄(“20-25”) =>购买(“网球拍”)是广义关联规则,因为”HEAD网球拍”和”网球拍”属于不同的抽象层次。

关联规则学习(Association Rule Learning) 的应用算法:

  • 先验算法(Apriori Algorithm)
  • Eclat算法(Eclat Algorithm)
  • FP-growth算法(FP-Growth Algorithm)