Deeplearning Algorithms tutorial
谷歌的人工智能位于全球前列,在图像识别、语音识别、无人驾驶等技术上都已经落地。而百度实质意义上扛起了国内的人工智能的大旗,覆盖无人驾驶、智能助手、图像识别等许多层面。苹果业已开始全面拥抱机器学习,新产品进军家庭智能音箱并打造工作站级别Mac。另外,腾讯的深度学习平台Mariana已支持了微信语音识别的语音输入法、语音开放平台、长按语音消息转文本等产品,在微信图像识别中开始应用。全球前十大科技公司全部发力人工智能理论研究和应用的实现,虽然入门艰难,但是一旦入门,高手也就在你的不远处!
机器学习主要有三种方式:监督学习,无监督学习与半监督学习。
(1)监督学习:从给定的训练数据集中学习出一个函数,当新的数据输入时,可以根据函数预测相应的结果。监督学习的训练集要求是包括输入和输出,也就是特征和目标。训练集中的目标是有标注的。如今机器学习已固有的监督学习算法有可以进行分类的,例如贝叶斯分类,SVM,ID3,C4.5以及分类决策树,以及现在最火热的人工神经网络,例如BP神经网络,RBF神经网络,Hopfield神经网络、深度信念网络和卷积神经网络等。人工神经网络是模拟人大脑的思考方式来进行分析,在人工神经网络中有显层,隐层以及输出层,而每一层都会有神经元,神经元的状态或开启或关闭,这取决于大数据。同样监督机器学习算法也可以作回归,最常用便是逻辑回归。
(2)无监督学习:与有监督学习相比,无监督学习的训练集的类标号是未知的,并且要学习的类的个数或集合可能事先不知道。常见的无监督学习算法包括聚类和关联,例如K均值法、Apriori算法。
(3)半监督学习:介于监督学习和无监督学习之间,例如EM算法。
如今的机器学习领域主要的研究工作在三个方面进行:1)面向任务的研究,研究和分析改进一组预定任务的执行性能的学习系统;2)认知模型,研究人类学习过程并进行计算模拟;3)理论的分析,从理论的层面探索可能的算法和独立的应用领域算法。
卷积神经网络(Convolutional Neural Network)
卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。 它包括卷积层(convolutional layer)和池化层(pooling layer)。
卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。
CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,这种特有的两次特征提取结构减小了特征分辨率。
CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。由于CNN的特征检测层通过训练数据进行学习,所以在使用CNN时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习,这也是卷积网络相对于神经元彼此相连网络的一大优势。卷积神经网络以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性,特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。
应用示例
import numpy as np
import scipy.signal as signal
import cPickle
import gzip
import gc
import scipy
#import objgraph
def sigmoid(input):
'激励函数'
out=1.7159*scipy.tanh(2.0/3.0*input)
return out
def dsigmoid(input):
'sigmoid的导函数已知input=sigmod(out)'
out=2.0/3.0/1.7159*(1.7159+input)*(1.7159-input)
return out
def convolutional(fm,ct,kernel,bias):
'卷积函数'
"fm 特征图 三维"
"ct 连接权矩阵"
"kernel 卷积核 三维"
"bias 偏置 向量"
map_width=fm.shape[2]
map_height=fm.shape[1]
kernel_width=kernel.shape[2]
kernel_height=kernel.shape[1]
'计算特征图的尺寸'
dst_height=map_height-kernel_height+1
dst_width=map_width-kernel_width+1
'计算输出特征图的数量'
cfmDims=np.max(ct[1])+1
n_kernels=kernel.shape[0]
#print("ct's shape%d:%d"%(ct.shape[0],ct.shape[1]))
' 初始化结果特征图'
cfm=np.zeros((cfmDims,dst_height,dst_width))
for index in xrange(0,cfmDims):
"首先加上偏置值"
cfm[index]+=bias[index]
for index in xrange(0,n_kernels):
#print(index)
this_fm=fm[ct[0,index]]
this_kernel=kernel[index]
"计算卷积"
this_conv=signal.convolve2d(this_fm, this_kernel, mode='valid')
cfm_index=ct[1,index]
cfm[cfm_index]+=this_conv
"使用sigmoid压制"
return sigmoid(cfm)
def subsampling(fm,sW,sb,pool_size,pool_stride):
"重采样函数"
"fm 特征图"
"sW 重采样权值 向量"
"sb 重采样偏置 向量"
"pool_size 重采样窗口大小 二维矩阵"
"pool_stride 步长 int"
sfm_width=int((fm.shape[2]-pool_size[1])/pool_stride)+1
sfm_height=int((fm.shape[1]-pool_size[0])/pool_stride)+1
sfmDims=fm.shape[0]
sfm=np.zeros((sfmDims,sfm_width,sfm_height))
#sfm=[]
"使用权值为1的核进行采样"
kernel=np.ones(pool_size)
for index in xrange(0,sfmDims):
this_fm=fm[index]
this_kernel=kernel*sW[index]
"采样实际就是一次卷积过程"
this_sfm=signal.convolve2d(this_fm, this_kernel, mode='valid')
sfm[index]=copy_fm(this_sfm,pool_stride)
sfm[index]=sfm[index]+sb[index]
sfm=sigmoid(sfm)
return sfm
def copy_fm(fm,stride):
height=fm.shape[0]
width=fm.shape[1]
result=[]
for y in xrange(0,height,stride):
y_result=[]
y_data=fm[y]
for x in xrange(0,width,stride):
y_result.append(y_data[x])
result.append(y_result)
return np.array(result)
def max_with_index(value):
"返回最大值,及最大值的下标"
"结果 [下标,最大值]"
d=np.max(value)
i=np.argmax(value)
return [i,d]
def grade(dout,out,input,w):
dout=dout*dsigmoid(out)
db=dout
dw=np.zeros(w.shape)
out=out*dsigmoid(out)
for i in xrange(w.shape[1]):
dw[:,i]=dout[i]*input
din=np.zeros(input.shape)
for i in xrange(db.shape[0]):
this_kernel=w[:,i]
#print("this kernrl:%s\n"%(this_kernel))
this_dout=dout[i]*this_kernel
#print("this dout: %s"%(this_dout))
din+=this_dout
return [din,dw,db]
def dconv2_in(dout,input,kernel):
return signal.convolve2d(dout,kernel,mode='full')
def dconv2_kernel(dout,input,kernel):
return signal.convolve2d(input,dout,mode='valid')
def initWeight(ct,kernel_shape):
kernel_num=ct[0].shape[0]
kernel_height=kernel_shape[0]
kernel_width=kernel_shape[1]
weights=np.zeros((kernel_num,kernel_height,kernel_width))
for i in xrange(kernel_num):
connected=np.array((ct[1]==ct[0,i]),dtype='int')
connected=np.array(np.nonzero(connected))
connected=connected.shape[0]
fanin=connected*kernel_height*kernel_width
sd=1.0/np.sqrt(fanin)
weights[i]=-1.0*sd+2*sd*np.random.random_sample((kernel_height,kernel_width))
return weights
class convlayer:
def __init__(self,cw,cb,sw,sb,ct,stride):
self.sw=sw
self.sb=sb
self.cw=cw
self.cb=cb
self.ct=ct
self.stride=stride
class bplayer:
def __init__(self,n_in,n_out):
sd=1.0/np.sqrt(n_in)
self.w=-sd+2*sd*np.random.random_sample((n_in,n_out))
self.b=np.zeros(n_out)
self.n_in=n_in
self.n_out=n_out
class convnet:
def __init__(self,image_shape):
self.eta=0.01
self.decay=0.8
self.step=2
ct1=np.array([[1,1,1,1]])
ct2=np.array([[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0],
[0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1],
[0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1],
[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]])
ct1=np.transpose(ct1)
ct2=np.transpose(ct2)
conv_ct1=np.nonzero(ct1)
conv_ct1=np.array((conv_ct1[1],conv_ct1[0]))
conv_ct2=np.nonzero(ct2)
conv_ct2=np.array((conv_ct2[1],conv_ct2[0]))
image_height=image_shape[0]
image_width=image_shape[1]
self.image_shape=image_shape
self.kernel_shape=[5,5]
self.pool_shape=[2,2]
self.stride=2
stride=self.stride
kernel_height=self.kernel_shape[0]
kernel_width=self.kernel_shape[1]
pool_height=self.pool_shape[0]
pool_width=self.pool_shape[1]
nofms1=ct1.shape[0]
"初始化卷积层1"
cmfHeight1=image_height-kernel_height+1
cfmWidth1=image_width-kernel_width+1
conv_layer1_cw=initWeight(conv_ct1, self.kernel_shape)
conv_layer2_cb=np.zeros(nofms1)
sfmHeight1=((cmfHeight1-pool_height)/stride)+1
sfmWidth1=((cfmWidth1-pool_width)/stride)+1
fanin=pool_height*pool_width
sd=1.0/np.sqrt(fanin)
conv_layer1_sw=-sd+2*sd*np.random.random_sample(nofms1)
conv_layer1_sb=np.zeros(nofms1)
self.conv1=convlayer(conv_layer1_cw,conv_layer2_cb,conv_layer1_sw,conv_layer1_sb,conv_ct1,stride)
"初始化卷基层2"
nofms2=ct2.shape[0]
conv_layer2_cw=initWeight(conv_ct2, self.kernel_shape)
conv_layer2_cb=np.zeros(nofms2)
cfmHeight2=sfmHeight1-kernel_height+1
cfmWidth2=sfmWidth1-kernel_width+1
sfmHeight2=((cfmHeight2-pool_height)/stride)+1
sfmWidth2=((cfmWidth2-pool_width)/stride)+1
fanin=pool_width*pool_height
sd=1.0/np.sqrt(fanin)
conv_layer2_sw=-sd+2*sd*np.random.random_sample(nofms2)
conv_layer2_sb=np.zeros(nofms2)
self.conv2=convlayer(conv_layer2_cw,conv_layer2_cb,conv_layer2_sw,conv_layer2_sb,conv_ct2,stride)
"BP分类器第一层"
self.bp1=bplayer(nofms2*sfmHeight2*sfmWidth2,20)
self.bp2=bplayer(20,10)
self.noErrors=0
def forwardPropConv(self,input):
"开始第一层的卷积操作"
ct=self.conv1.ct
cw=self.conv1.cw
cb=self.conv1.cb
cfm1=convolutional(input, ct, cw, cb)
sw=self.conv1.sw
sb=self.conv1.sb
sfm1=subsampling(cfm1, sw, sb, self.pool_shape, self.stride)
"开始第二层的卷积操作"
ct=self.conv2.ct
cw=self.conv2.cw
cb=self.conv2.cb
cfm2=convolutional(sfm1, ct, cw, cb)
sw=self.conv2.sw
sb=self.conv2.sb
sfm2=subsampling(cfm2, sw, sb, self.pool_shape, self.stride)
return [cfm1,sfm1,cfm2,sfm2]
def forwradPropBp(self,input):
"开始第一层分类器的操作"
w=self.bp1.w
b=self.bp1.b
out1=np.dot(input,w)
for i in xrange(b.shape[0]):
out1[i]+=b[i]
out1=sigmoid(out1)
"开始第二层的操作"
w=self.bp2.w
b=self.bp2.b
out2=np.dot(out1,w)
for i in xrange(b.shape[0]):
out2[i]+=b[i]
out2=sigmoid(out2)
return [out1,out2]
def backPropBp(self,sfm,tartget,fm1,fm2,w1,w2,b1,b2):
"对BP层进行反向传播"
"sfm 卷积层的S神经元的输出"
"target 目标值"
"fm1 BP层第一层输出"
"fm2 BP层第二层输出"
"w1 b1 第一层参数"
"w2 b2 第二层参数"
dtarget=-np.ones(self.bp2.n_out)*0.8
dtarget[target]=0.8
dfm2=np.zeros(self.bp2.n_out)
dfm2=dfm2-dtarget
dmf2=dfm2*dsigmoid(dfm2)
dfm1,dw2,db2=grade(dfm2,fm2,fm1,w2)
dsfm,dw1,db1=grade(dfm1,fm1,sfm,w1)
return [dsfm,dw1,db1,dw2,db2]
def backPropSubsampling(self,dsfm,sfm,cfm,sw,sb,pool_shape,stride):
"对S神经元进行反向传播"
"dsfm s神经元的输出的偏导数"
"sfm s神经元的输出"
"cfm 上层c神经元的输出"
"sw sb 神经元参数"
"pool_shape 采样窗口"
"stride 采样步长"
dims,height,width=cfm.shape
dfm=np.zeros(cfm.shape)
dsw=np.zeros(sw.shape)
dsb=np.zeros(sb.shape)
dsfm=dsfm*dsigmoid(sfm)
kernel=np.ones(pool_shape)
for i in xrange(dims):
this_dsfm=dsfm[i]
dthis_kernel=kernel*sw[i]
dsb[i]=np.sum(this_dsfm)
cfm_height=height-pool_shape[0]+1
cfm_width=width-pool_shape[1]+1
#print("height:%d,width:%d\n"%(cfm_height,cfm_width))
dsfm_beforeSubsampling=np.zeros((cfm_height, cfm_width))
y=0
x=0
for dy in xrange(0,dsfm_beforeSubsampling.shape[0],stride):
x=0
for dx in xrange(0,dsfm_beforeSubsampling.shape[1],stride):
dsfm_beforeSubsampling[dy,dx]=this_dsfm[y,x]
x+=1
y+=1
dfm[i]=dconv2_in(dsfm_beforeSubsampling,cfm[i],dthis_kernel)
dsw[i]=np.sum(dthis_kernel)
return [dfm,dsw,dsb]
def backPropConvulution(self,dcfm,cfm,fm,ct,w,b):
dfm=np.zeros(fm.shape)
dw=np.zeros(w.shape)
db=np.zeros(b.shape)
dcfm=dcfm*dsigmoid(cfm)
for i in xrange(b.shape[0]):
this_dcfm=dcfm[i]
db[i]=np.sum(this_dcfm)
for i in xrange(w.shape[0]):
this_fm=fm[ct[0,i]]
this_w=w[i]
this_dcfm=dcfm[ct[1,i]]
this_dfm=dconv2_in(this_dcfm,this_fm,this_w)
dfm[ct[0,i]]=dfm[ct[0,i]]+this_dfm
dw[i]=dconv2_kernel(this_dcfm,this_fm,this_w)
return [dfm,dw,db]
def trian(self,input,target):
cfm1,sfm1,cfm2,sfm2=self.forwardPropConv(input)
bp_input=sfm2.reshape(self.bp1.n_in)
bp1_out,bp2_out=self.forwradPropBp(bp_input)
out=max_with_index(bp2_out)
if out[0]==target:
self.noErrors+=1
eta=self.eta
w1=self.bp1.w
b1=self.bp1.b
w2=self.bp2.w
b2=self.bp2.b
dsfm,dw1,db1,dw2,db2=self.backPropBp(bp_input, target, bp1_out, bp2_out, w1, w2, b1, b2)
self.bp1.w=self.bp1.w-dw1*eta
self.bp1.b=self.bp1.b-db1*eta
self.bp2.w=self.bp2.w-dw2*eta
self.bp2.b=self.bp2.b-db2*eta
dsfm=dsfm.reshape(sfm2.shape)
sw2=self.conv2.sw
sb2=self.conv2.sb
ct2=self.conv2.ct
cw2=self.conv2.cw
cb2=self.conv2.cb
pool_shape=self.pool_shape
stride=self.stride
dcfm2,dsw2,dsb2=self.backPropSubsampling(dsfm, sfm2,cfm2, sw2, sb2, pool_shape, stride)
dsfm1,dcw2,dcb2=self.backPropConvulution(dcfm2, cfm2, sfm1, ct2, cw2, cb2)
self.conv2.sw=self.conv2.sw-dsw2*eta
self.conv2.sb=self.conv2.sb-dsb2*eta
self.conv2.cw=self.conv2.cw-dcw2*eta
self.conv2.cb=self.conv2.cb-dcb2*eta
sw1=self.conv1.sw
sb1=self.conv1.sb
ct1=self.conv1.ct
cw1=self.conv1.cw
cb1=self.conv1.cb
dcfm1,dsw1,dsb1=self.backPropSubsampling(dsfm1, sfm1,cfm1, sw1, sb1, pool_shape, stride)
dfm,dcw1,dcb1=self.backPropConvulution(dcfm1, cfm1, input, ct1, cw1, cb1)
self.conv1.sw=sw1-dsw1*eta
self.conv1.sb=sb1-dsb1*eta
self.conv1.cw=cw1-dcw1*eta
self.conv1.cb=cb1-dcb1*eta
#print(out)
def load_data(path):
f=gzip.open(path,'rb')
train_set,valid_set,test_set=cPickle.load(f)
del f.f
return [train_set,valid_set,test_set]
if __name__=='__main__':
gc.enable()
gc.set_debug(gc.DEBUG_COLLECTABLE | gc.DEBUG_UNCOLLECTABLE | gc.DEBUG_INSTANCES | gc.DEBUG_OBJECTS)
train_set,valid_set,test_set=load_data('d:/data/mnist.pkl.gz')
num=train_set[0].shape[0]
cnn=convnet([28,28])
for train in xrange(1,21):
cnn.noErrors=0
print("第%d次训练"%(train))
for i in xrange(1,num+1):
image=train_set[0][i-1]
data=image.reshape([1,28,28])
target=train_set[1][i-1]
cnn.trian(data, target)
if i%1000==0:
print("train %d,noErrors %d\n"%(i,cnn.noErrors))
_unreachable = gc.collect()
print("unreachable %d\n"%(_unreachable))
if train%cnn.step==0:
cnn.eta=cnn.eta*cnn.decay
del data
del image