读取 Q-表达式
由于 Q-表达式和 S-表达式的形式基本一致,所以它们内部实现也大致是相同的。我们考虑重用 S-表达式的数据结构来表示 Q-表达式,在此之前需要向枚举中添加一个单独的类型。
enum { LVAL_ERR, LVAL_NUM, LVAL_SYM, LVAL_SEXPR, LVAL_QEXPR };
另外,还需为其编写一个构造函数。
/* A pointer to a new empty Qexpr lval */
lval* lval_qexpr(void) {
lval* v = malloc(sizeof(lval));
v->type = LVAL_QEXPR;
v->count = 0;
v->cell = NULL;
return v;
}
Q-表达式的打印和删除逻辑也和 S-表达式别无二致,我们只需照葫芦画瓢,在相应的函数中添加对应的逻辑即可,具体如下所示。
void lval_print(lval* v) {
switch (v->type) {
case LVAL_NUM: printf("%li", v->num); break;
case LVAL_ERR: printf("Error: %s", v->err); break;
case LVAL_SYM: printf("%s", v->sym); break;
case LVAL_SEXPR: lval_expr_print(v, '(', ')'); break;
case LVAL_QEXPR: lval_expr_print(v, '{', '}'); break;
}
}
void lval_del(lval* v) {
switch (v->type) {
case LVAL_NUM: break;
case LVAL_ERR: free(v->err); break;
case LVAL_SYM: free(v->sym); break;
/* If Qexpr or Sexpr then delete all elements inside */
case LVAL_QEXPR:
case LVAL_SEXPR:
for (int i = 0; i < v->count; i++) {
lval_del(v->cell[i]);
}
/* Also free the memory allocated to contain the pointers */
free(v->cell);
break;
}
free(v);
}
经过这些简单的变化之后,我们就可以更新读取函数 lval_read
,使其可以正确读取 Q-表达式了。因为 Q-表达式重用了所有 S-表达式的数据类型,所以我们也自然可以重用所有 S-表达式的函数,例如 lval_add
。
因此,为了能够读取 Q-表达式,我们只需在抽象语法树中检测并创建空的 S-表达式的地方添加一个新的情况即可。
if (strstr(t->tag, "qexpr")) { x = lval_qexpr(); }
同时在lval_read
中添加一下代码识别花括号:
if (strcmp(t->children[i]->contents, "(") == 0) { continue; }
if (strcmp(t->children[i]->contents, ")") == 0) { continue; }
if (strcmp(t->children[i]->contents, "}") == 0) { continue; }
if (strcmp(t->children[i]->contents, "{") == 0) { continue; }
因为 Q-表达式没有任何求值方式,所以无需改动任何已有的求值函数,我们的 Q-表达式就可以小试牛刀了。尝试输入几个 Q-表达式,看看是否不会被求值。
lispy> {1 2 3 4}
{1 2 3 4}
lispy> {1 2 (+ 5 6) 4}
{1 2 (+ 5 6) 4}
lispy> {{2 3 4} {1}}
{{2 3 4} {1}}
lispy>
当前内容版权归 NoahDragon 译 或其关联方所有,如需对内容或内容相关联开源项目进行关注与资助,请访问 NoahDragon 译 .