概述
Flink 为日期和时间提供了丰富的数据类型, 包括 DATE
, TIME
, TIMESTAMP
, TIMESTAMP_LTZ
, INTERVAL YEAR TO MONTH
, INTERVAL DAY TO SECOND
(更多详情请参考 Date and Time)。 Flink 支持在 session (会话)级别设置时区(更多详情请参考 table.local-time-zone)。 Flink 对多种时间类型和时区的支持使得跨时区的数据处理变得非常容易。
TIMESTAMP vs TIMESTAMP_LTZ
TIMESTAMP 类型
TIMESTAMP(p)
是TIMESTAMP(p) WITHOUT TIME ZONE
的简写, 精度p
支持的范围是0-9, 默认是6。TIMESTAMP
用于描述年, 月, 日, 小时, 分钟, 秒 和 小数秒对应的时间戳。TIMESTAMP
可以通过一个字符串来指定,例如:
Flink SQL> SELECT TIMESTAMP '1970-01-01 00:00:04.001';
+-------------------------+
| 1970-01-01 00:00:04.001 |
+-------------------------+
TIMESTAMP_LTZ 类型
TIMESTAMP_LTZ(p)
是TIMESTAMP(p) WITH LOCAL TIME ZONE
的简写, 精度p
支持的范围是0-9, 默认是6。TIMESTAMP_LTZ
用于描述时间线上的绝对时间点, 使用 long 保存从 epoch 至今的毫秒数, 使用int保存毫秒中的纳秒数。 epoch 时间是从 java 的标准 epoch 时间1970-01-01T00:00:00Z
开始计算。 在计算和可视化时, 每个TIMESTAMP_LTZ
类型的数据都是使用的 session (会话)中配置的时区。TIMESTAMP_LTZ
没有字符串表达形式因此无法通过字符串来指定, 可以通过一个 long 类型的 epoch 时间来转化(例如: 通过 Java 来产生一个 long 类型的 epoch 时间System.currentTimeMillis()
)
Flink SQL> CREATE VIEW T1 AS SELECT TO_TIMESTAMP_LTZ(4001, 3);
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM T1;
+---------------------------+
| TO_TIMESTAMP_LTZ(4001, 3) |
+---------------------------+
| 1970-01-01 00:00:04.001 |
+---------------------------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM T1;
+---------------------------+
| TO_TIMESTAMP_LTZ(4001, 3) |
+---------------------------+
| 1970-01-01 08:00:04.001 |
+---------------------------+
TIMESTAMP_LTZ
可以用于跨时区的计算,因为它是一个基于 epoch 的绝对时间点(比如上例中的4001
毫秒)代表的就是不同时区的同一个绝对时间点。 补充一个背景知识:在同一个时间点, 全世界所有的机器上执行System.currentTimeMillis()
都会返回同样的值。 (比如上例中的4001
milliseconds), 这就是绝对时间的定义。
时区的作用
本地时区定义了当前 session(会话)所在的时区, 你可以在 Sql client 或者应用程序中配置。
SQL Client
-- 设置为 UTC 时区
Flink SQL> SET table.local-time-zone=UTC;
-- 设置为上海时区
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
-- 设置为Los_Angeles时区
Flink SQL> SET table.local-time-zone=America/Los_Angeles;
Java
EnvironmentSettings envSetting = EnvironmentSettings.newInstance().build();
TableEnvironment tEnv = TableEnvironment.create(envSetting);
// 设置为 UTC 时区
tEnv.getConfig().setLocalTimeZone(ZoneId.of("UTC"));
// 设置为上海时区
tEnv.getConfig().setLocalTimeZone(ZoneId.of("Asia/Shanghai"));
// 设置为 Los_Angeles 时区
tEnv.getConfig().setLocalTimeZone(ZoneId.of("America/Los_Angeles"));
Scala
val envSetting = EnvironmentSettings.newInstance.build
val tEnv = TableEnvironment.create(envSetting)
// 设置为 UTC 时区
tEnv.getConfig.setLocalTimeZone(ZoneId.of("UTC"))
// 设置为上海时区
tEnv.getConfig.setLocalTimeZone(ZoneId.of("Asia/Shanghai"))
// 设置为 Los_Angeles 时区
tEnv.getConfig.setLocalTimeZone(ZoneId.of("America/Los_Angeles"))
session(会话)的时区设置在 Flink SQL 中非常有用, 它的主要用法如下:
确定时间函数的返回值
session (会话)中配置的时区会对以下函数生效。
- LOCALTIME
- LOCALTIMESTAMP
- CURRENT_DATE
- CURRENT_TIME
- CURRENT_TIMESTAMP
- CURRENT_ROW_TIMESTAMP()
- NOW()
- PROCTIME()
Flink SQL> SET sql-client.execution.result-mode=tableau;
Flink SQL> CREATE VIEW MyView1 AS SELECT LOCALTIME, LOCALTIMESTAMP, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_ROW_TIMESTAMP(), NOW(), PROCTIME();
Flink SQL> DESC MyView1;
+------------------------+-----------------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+------------------------+-----------------------------+-------+-----+--------+-----------+
| LOCALTIME | TIME(0) | false | | | |
| LOCALTIMESTAMP | TIMESTAMP(3) | false | | | |
| CURRENT_DATE | DATE | false | | | |
| CURRENT_TIME | TIME(0) | false | | | |
| CURRENT_TIMESTAMP | TIMESTAMP_LTZ(3) | false | | | |
|CURRENT_ROW_TIMESTAMP() | TIMESTAMP_LTZ(3) | false | | | |
| NOW() | TIMESTAMP_LTZ(3) | false | | | |
| PROCTIME() | TIMESTAMP_LTZ(3) *PROCTIME* | false | | | |
+------------------------+-----------------------------+-------+-----+--------+-----------+
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView1;
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
| LOCALTIME | LOCALTIMESTAMP | CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP | CURRENT_ROW_TIMESTAMP() | NOW() | PROCTIME() |
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
| 15:18:36 | 2021-04-15 15:18:36.384 | 2021-04-15 | 15:18:36 | 2021-04-15 15:18:36.384 | 2021-04-15 15:18:36.384 | 2021-04-15 15:18:36.384 | 2021-04-15 15:18:36.384 |
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView1;
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
| LOCALTIME | LOCALTIMESTAMP | CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP | CURRENT_ROW_TIMESTAMP() | NOW() | PROCTIME() |
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
| 23:18:36 | 2021-04-15 23:18:36.384 | 2021-04-15 | 23:18:36 | 2021-04-15 23:18:36.384 | 2021-04-15 23:18:36.384 | 2021-04-15 23:18:36.384 | 2021-04-15 23:18:36.384 |
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
TIMESTAMP_LTZ
字符串表示
当一个 TIMESTAMP_LTZ
值转为 string 格式时, session 中配置的时区会生效。 例如打印这个值,将类型强制转化为 STRING
类型, 将类型强制转换为 TIMESTAMP
,将 TIMESTAMP
的值转化为 TIMESTAMP_LTZ
类型:
Flink SQL> CREATE VIEW MyView2 AS SELECT TO_TIMESTAMP_LTZ(4001, 3) AS ltz, TIMESTAMP '1970-01-01 00:00:01.001' AS ntz;
Flink SQL> DESC MyView2;
+------+------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+------+------------------+-------+-----+--------+-----------+
| ltz | TIMESTAMP_LTZ(3) | true | | | |
| ntz | TIMESTAMP(3) | false | | | |
+------+------------------+-------+-----+--------+-----------+
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView2;
+-------------------------+-------------------------+
| ltz | ntz |
+-------------------------+-------------------------+
| 1970-01-01 00:00:04.001 | 1970-01-01 00:00:01.001 |
+-------------------------+-------------------------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView2;
+-------------------------+-------------------------+
| ltz | ntz |
+-------------------------+-------------------------+
| 1970-01-01 08:00:04.001 | 1970-01-01 00:00:01.001 |
+-------------------------+-------------------------+
Flink SQL> CREATE VIEW MyView3 AS SELECT ltz, CAST(ltz AS TIMESTAMP(3)), CAST(ltz AS STRING), ntz, CAST(ntz AS TIMESTAMP_LTZ(3)) FROM MyView2;
Flink SQL> DESC MyView3;
+-------------------------------+------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+-------------------------------+------------------+-------+-----+--------+-----------+
| ltz | TIMESTAMP_LTZ(3) | true | | | |
| CAST(ltz AS TIMESTAMP(3)) | TIMESTAMP(3) | true | | | |
| CAST(ltz AS STRING) | STRING | true | | | |
| ntz | TIMESTAMP(3) | false | | | |
| CAST(ntz AS TIMESTAMP_LTZ(3)) | TIMESTAMP_LTZ(3) | false | | | |
+-------------------------------+------------------+-------+-----+--------+-----------+
Flink SQL> SELECT * FROM MyView3;
+-------------------------+---------------------------+-------------------------+-------------------------+-------------------------------+
| ltz | CAST(ltz AS TIMESTAMP(3)) | CAST(ltz AS STRING) | ntz | CAST(ntz AS TIMESTAMP_LTZ(3)) |
+-------------------------+---------------------------+-------------------------+-------------------------+-------------------------------+
| 1970-01-01 08:00:04.001 | 1970-01-01 08:00:04.001 | 1970-01-01 08:00:04.001 | 1970-01-01 00:00:01.001 | 1970-01-01 00:00:01.001 |
+-------------------------+---------------------------+-------------------------+-------------------------+-------------------------------+
时间属性和时区
更多时间属性相关的详细介绍, 请参考 Time Attribute 。
处理时间和时区
Flink SQL 使用函数 PROCTIME()
来定义处理时间属性, 该函数返回的类型是 TIMESTAMP_LTZ
。
在 Flink1.13 之前,
PROCTIME()
函数返回的类型是TIMESTAMP
, 返回值是UTC时区下的TIMESTAMP
。 例如: 当上海的时间为2021-03-01 12:00:00
时,PROCTIME()
显示的时间却是错误的2021-03-01 04:00:00
。 这个问题在 Flink 1.13 中修复了, 因此用户不用再去处理时区的问题了。
PROCTIME()
返回的是本地时区的时间, 使用 TIMESTAMP_LTZ
类型也可以支持夏令时时间。
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT PROCTIME();
+-------------------------+
| PROCTIME() |
+-------------------------+
| 2021-04-15 14:48:31.387 |
+-------------------------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT PROCTIME();
+-------------------------+
| PROCTIME() |
+-------------------------+
| 2021-04-15 22:48:31.387 |
+-------------------------+
Flink SQL> CREATE TABLE MyTable1 (
item STRING,
price DOUBLE,
proctime as PROCTIME()
) WITH (
'connector' = 'socket',
'hostname' = '127.0.0.1',
'port' = '9999',
'format' = 'csv'
);
Flink SQL> CREATE VIEW MyView3 AS
SELECT
TUMBLE_START(proctime, INTERVAL '10' MINUTES) AS window_start,
TUMBLE_END(proctime, INTERVAL '10' MINUTES) AS window_end,
TUMBLE_PROCTIME(proctime, INTERVAL '10' MINUTES) as window_proctime,
item,
MAX(price) as max_price
FROM MyTable1
GROUP BY TUMBLE(proctime, INTERVAL '10' MINUTES), item;
Flink SQL> DESC MyView3;
+-----------------+-----------------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+-----------------+-----------------------------+-------+-----+--------+-----------+
| window_start | TIMESTAMP(3) | false | | | |
| window_end | TIMESTAMP(3) | false | | | |
| window_proctime | TIMESTAMP_LTZ(3) *PROCTIME* | false | | | |
| item | STRING | true | | | |
| max_price | DOUBLE | true | | | |
+-----------------+-----------------------------+-------+-----+--------+-----------+
在终端执行以下命令写入数据到 MyTable1
:
> nc -lk 9999
A,1.1
B,1.2
A,1.8
B,2.5
C,3.8
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView3;
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_procime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:10:00.005 | A | 1.8 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:10:00.007 | B | 2.5 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:10:00.007 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView3;
相比在 UTC 时区下的计算结果, 在 Asia/Shanghai 时区下计算的窗口开始时间, 窗口结束时间和窗口处理时间是不同的。
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_procime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:10:00.005 | A | 1.8 |
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:10:00.007 | B | 2.5 |
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:10:00.007 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
处理时间窗口是不确定的, 每次运行都会返回不同的窗口和聚合结果。 以上的示例只用于说明时区如何影响处理时间窗口。
事件时间和时区
Flink 支持在 TIMESTAMP
列和 TIMESTAMP_LTZ
列上定义时间属性。
TIMESTAMP 上的事件时间属性
如果 source 中的时间用于表示年-月-日-小时-分钟-秒, 通常是一个不带时区的字符串, 例如: 2020-04-15 20:13:40.564
。 推荐在 TIMESTAMP
列上定义事件时间属性。
Flink SQL> CREATE TABLE MyTable2 (
item STRING,
price DOUBLE,
ts TIMESTAMP(3), -- TIMESTAMP data type
WATERMARK FOR ts AS ts - INTERVAL '10' SECOND
) WITH (
'connector' = 'socket',
'hostname' = '127.0.0.1',
'port' = '9999',
'format' = 'csv'
);
Flink SQL> CREATE VIEW MyView4 AS
SELECT
TUMBLE_START(ts, INTERVAL '10' MINUTES) AS window_start,
TUMBLE_END(ts, INTERVAL '10' MINUTES) AS window_end,
TUMBLE_ROWTIME(ts, INTERVAL '10' MINUTES) as window_rowtime,
item,
MAX(price) as max_price
FROM MyTable2
GROUP BY TUMBLE(ts, INTERVAL '10' MINUTES), item;
Flink SQL> DESC MyView4;
+----------------+------------------------+------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+----------------+------------------------+------+-----+--------+-----------+
| window_start | TIMESTAMP(3) | true | | | |
| window_end | TIMESTAMP(3) | true | | | |
| window_rowtime | TIMESTAMP(3) *ROWTIME* | true | | | |
| item | STRING | true | | | |
| max_price | DOUBLE | true | | | |
+----------------+------------------------+------+-----+--------+-----------+
在终端执行以下命令用于写入数据到 MyTable2
:
> nc -lk 9999
A,1.1,2021-04-15 14:01:00
B,1.2,2021-04-15 14:02:00
A,1.8,2021-04-15 14:03:00
B,2.5,2021-04-15 14:04:00
C,3.8,2021-04-15 14:05:00
C,3.8,2021-04-15 14:11:00
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView4;
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_rowtime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | A | 1.8 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | B | 2.5 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView4;
相比在 UTC 时区下的计算结果, 在 Asia/Shanghai 时区下计算的窗口开始时间, 窗口结束时间和窗口的 rowtime 是相同的。
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_rowtime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | A | 1.8 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | B | 2.5 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
TIMESTAMP_LTZ 上的事件时间属性
如果源数据中的时间为一个 epoch 时间, 通常是一个 long 值, 例如: 1618989564564
,推荐将事件时间属性定义在 TIMESTAMP_LTZ
列上。
Flink SQL> CREATE TABLE MyTable3 (
item STRING,
price DOUBLE,
ts BIGINT, -- long time value in epoch milliseconds
ts_ltz AS TO_TIMESTAMP_LTZ(ts, 3),
WATERMARK FOR ts_ltz AS ts_ltz - INTERVAL '10' SECOND
) WITH (
'connector' = 'socket',
'hostname' = '127.0.0.1',
'port' = '9999',
'format' = 'csv'
);
Flink SQL> CREATE VIEW MyView5 AS
SELECT
TUMBLE_START(ts_ltz, INTERVAL '10' MINUTES) AS window_start,
TUMBLE_END(ts_ltz, INTERVAL '10' MINUTES) AS window_end,
TUMBLE_ROWTIME(ts_ltz, INTERVAL '10' MINUTES) as window_rowtime,
item,
MAX(price) as max_price
FROM MyTable3
GROUP BY TUMBLE(ts_ltz, INTERVAL '10' MINUTES), item;
Flink SQL> DESC MyView5;
+----------------+----------------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+----------------+----------------------------+-------+-----+--------+-----------+
| window_start | TIMESTAMP(3) | false | | | |
| window_end | TIMESTAMP(3) | false | | | |
| window_rowtime | TIMESTAMP_LTZ(3) *ROWTIME* | true | | | |
| item | STRING | true | | | |
| max_price | DOUBLE | true | | | |
+----------------+----------------------------+-------+-----+--------+-----------+
MyTable3
的输入数据为:
A,1.1,1618495260000 # The corresponding utc timestamp is 2021-04-15 14:01:00
B,1.2,1618495320000 # The corresponding utc timestamp is 2021-04-15 14:02:00
A,1.8,1618495380000 # The corresponding utc timestamp is 2021-04-15 14:03:00
B,2.5,1618495440000 # The corresponding utc timestamp is 2021-04-15 14:04:00
C,3.8,1618495500000 # The corresponding utc timestamp is 2021-04-15 14:05:00
C,3.8,1618495860000 # The corresponding utc timestamp is 2021-04-15 14:11:00
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView5;
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_rowtime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | A | 1.8 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | B | 2.5 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView5;
相比在 UTC 时区下的计算结果, 在 Asia/Shanghai 时区下计算的窗口开始时间, 窗口结束时间和窗口的 rowtime 是不同的。
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_rowtime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:09:59.999 | A | 1.8 |
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:09:59.999 | B | 2.5 |
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:09:59.999 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
夏令时支持
Flink SQL支持在 TIMESTAMP_LTZ
列上定义时间属性, 基于这一特征,Flink SQL 在窗口中使用 TIMESTAMP
和 TIMESTAMP_LTZ
类型优雅地支持了夏令时。
Flink 使用时间戳的字符格式来分割窗口并通过每条记录对应的 epoch 时间来分配窗口。 这意味着 Flink 窗口开始时间和窗口结束时间使用的是 TIMESTAMP
类型(例如: TUMBLE_START
和 TUMBLE_END
), 窗口的时间属性使用的是 TIMESTAMP_LTZ
类型(例如: TUMBLE_PROCTIME
, TUMBLE_ROWTIME
)。 给定一个 tumble window示例, 在 Los_Angele 时区下夏令时从 2021-03-14 02:00:00
开始:
long epoch1 = 1615708800000L; // 2021-03-14 00:00:00
long epoch2 = 1615712400000L; // 2021-03-14 01:00:00
long epoch3 = 1615716000000L; // 2021-03-14 03:00:00, 手表往前拨一小时,跳过 (2021-03-14 02:00:00)
long epoch4 = 1615719600000L; // 2021-03-14 04:00:00
在 Los_angele 时区下, tumble window [2021-03-14 00:00:00, 2021-03-14 00:04:00] 将会收集3个小时的数据, 在其他非夏令时的时区下将会收集4个小时的数据,用户只需要在 TIMESTAMP_LTZ
列上声明时间属性即可。
Flink 的所有窗口(如 Hop window, Session window, Cumulative window)都会遵循这种方式, Flink SQL 中的所有操作都很好地支持了 TIMESTAMP_LTZ
类型,因此Flink可以非常优雅的支持夏令时。
Batch 模式和 Streaming 模式的区别
以下函数:
- LOCALTIME
- LOCALTIMESTAMP
- CURRENT_DATE
- CURRENT_TIME
- CURRENT_TIMESTAMP
- NOW()
Flink 会根据执行模式来进行不同计算,在 Streaming 模式下这些函数是每条记录都会计算一次,但在 Batch 模式下,只会在 query 开始时计算一次,所有记录都使用相同的结果。
以下时间函数无论是在 Streaming 模式还是 Batch 模式下,都会为每条记录计算一次结果:
- CURRENT_ROW_TIMESTAMP()
- PROCTIME()