Overview
Flink provides rich data types for Date and Time, including DATE
, TIME
, TIMESTAMP
, TIMESTAMP_LTZ
, INTERVAL YEAR TO MONTH
, INTERVAL DAY TO SECOND
(please see Date and Time for detailed information). Flink supports setting time zone in session level (please see table.local-time-zone for detailed information). These timestamp data types and time zone support of Flink make it easy to process business data across time zones.
TIMESTAMP vs TIMESTAMP_LTZ
TIMESTAMP type
TIMESTAMP(p)
is an abbreviation forTIMESTAMP(p) WITHOUT TIME ZONE
, the precisionp
supports range is from 0 to 9, 6 by default.TIMESTAMP
describes a timestamp represents year, month, day, hour, minute, second and fractional seconds.TIMESTAMP
can be specified from a string literal, e.g.
Flink SQL> SELECT TIMESTAMP '1970-01-01 00:00:04.001';
+-------------------------+
| 1970-01-01 00:00:04.001 |
+-------------------------+
TIMESTAMP_LTZ type
TIMESTAMP_LTZ(p)
is an abbreviation forTIMESTAMP(p) WITH LOCAL TIME ZONE
, the precisionp
supports range is from 0 to 9, 6 by default.TIMESTAMP_LTZ
describes an absolute time point on the time-line, it stores a long value representing epoch-milliseconds and an int representing nanosecond-of-millisecond. The epoch time is measured from the standard Java epoch of1970-01-01T00:00:00Z
. Every datum ofTIMESTAMP_LTZ
type is interpreted in the local time zone configured in the current session for computation and visualization.TIMESTAMP_LTZ
has no literal representation and thus can not specify from literal, it can derives from a long epoch time(e.g. The long time produced by JavaSystem.currentTimeMillis()
)
Flink SQL> CREATE VIEW T1 AS SELECT TO_TIMESTAMP_LTZ(4001, 3);
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM T1;
+---------------------------+
| TO_TIMESTAMP_LTZ(4001, 3) |
+---------------------------+
| 1970-01-01 00:00:04.001 |
+---------------------------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM T1;
+---------------------------+
| TO_TIMESTAMP_LTZ(4001, 3) |
+---------------------------+
| 1970-01-01 08:00:04.001 |
+---------------------------+
TIMESTAMP_LTZ
can be used in cross time zones business because the absolute time point (e.g. above4001
milliseconds) describes a same instantaneous point in different time zones. Giving a background that at a same time point, theSystem.currentTimeMillis()
of all machines in the world returns same value (e.g. the4001
milliseconds in above example), this is absolute time point meaning.
Time Zone Usage
The local time zone defines current session time zone id. You can config the time zone in Sql Client or Applications.
SQL Client
-- set to UTC time zone
Flink SQL> SET table.local-time-zone=UTC;
-- set to Shanghai time zone
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
-- set to Los_Angeles time zone
Flink SQL> SET table.local-time-zone=America/Los_Angeles;
Java
EnvironmentSettings envSetting = EnvironmentSettings.newInstance().build();
TableEnvironment tEnv = TableEnvironment.create(envSetting);
// set to UTC time zone
tEnv.getConfig().setLocalTimeZone(ZoneId.of("UTC"));
// set to Shanghai time zone
tEnv.getConfig().setLocalTimeZone(ZoneId.of("Asia/Shanghai"));
// set to Los_Angeles time zone
tEnv.getConfig().setLocalTimeZone(ZoneId.of("America/Los_Angeles"));
Scala
val envSetting = EnvironmentSettings.newInstance.build
val tEnv = TableEnvironment.create(envSetting)
// set to UTC time zone
tEnv.getConfig.setLocalTimeZone(ZoneId.of("UTC"))
// set to Shanghai time zone
tEnv.getConfig.setLocalTimeZone(ZoneId.of("Asia/Shanghai"))
// set to Los_Angeles time zone
tEnv.getConfig.setLocalTimeZone(ZoneId.of("America/Los_Angeles"))
The session time zone is useful in Flink SQL, the main usages are:
Decide time functions return value
The following time functions is influenced by the configured time zone.
- LOCALTIME
- LOCALTIMESTAMP
- CURRENT_DATE
- CURRENT_TIME
- CURRENT_TIMESTAMP
- CURRENT_ROW_TIMESTAMP()
- NOW()
- PROCTIME()
Flink SQL> SET sql-client.execution.result-mode=tableau;
Flink SQL> CREATE VIEW MyView1 AS SELECT LOCALTIME, LOCALTIMESTAMP, CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_ROW_TIMESTAMP(), NOW(), PROCTIME();
Flink SQL> DESC MyView1;
+------------------------+-----------------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+------------------------+-----------------------------+-------+-----+--------+-----------+
| LOCALTIME | TIME(0) | false | | | |
| LOCALTIMESTAMP | TIMESTAMP(3) | false | | | |
| CURRENT_DATE | DATE | false | | | |
| CURRENT_TIME | TIME(0) | false | | | |
| CURRENT_TIMESTAMP | TIMESTAMP_LTZ(3) | false | | | |
|CURRENT_ROW_TIMESTAMP() | TIMESTAMP_LTZ(3) | false | | | |
| NOW() | TIMESTAMP_LTZ(3) | false | | | |
| PROCTIME() | TIMESTAMP_LTZ(3) *PROCTIME* | false | | | |
+------------------------+-----------------------------+-------+-----+--------+-----------+
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView1;
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
| LOCALTIME | LOCALTIMESTAMP | CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP | CURRENT_ROW_TIMESTAMP() | NOW() | PROCTIME() |
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
| 15:18:36 | 2021-04-15 15:18:36.384 | 2021-04-15 | 15:18:36 | 2021-04-15 15:18:36.384 | 2021-04-15 15:18:36.384 | 2021-04-15 15:18:36.384 | 2021-04-15 15:18:36.384 |
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView1;
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
| LOCALTIME | LOCALTIMESTAMP | CURRENT_DATE | CURRENT_TIME | CURRENT_TIMESTAMP | CURRENT_ROW_TIMESTAMP() | NOW() | PROCTIME() |
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
| 23:18:36 | 2021-04-15 23:18:36.384 | 2021-04-15 | 23:18:36 | 2021-04-15 23:18:36.384 | 2021-04-15 23:18:36.384 | 2021-04-15 23:18:36.384 | 2021-04-15 23:18:36.384 |
+-----------+-------------------------+--------------+--------------+-------------------------+-------------------------+-------------------------+-------------------------+
TIMESTAMP_LTZ
string representation
The session timezone is used when represents a TIMESTAMP_LTZ
value to string format, i.e print the value, cast the value to STRING
type, cast the value to TIMESTAMP
, cast a TIMESTAMP
value to TIMESTAMP_LTZ
:
Flink SQL> CREATE VIEW MyView2 AS SELECT TO_TIMESTAMP_LTZ(4001, 3) AS ltz, TIMESTAMP '1970-01-01 00:00:01.001' AS ntz;
Flink SQL> DESC MyView2;
+------+------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+------+------------------+-------+-----+--------+-----------+
| ltz | TIMESTAMP_LTZ(3) | true | | | |
| ntz | TIMESTAMP(3) | false | | | |
+------+------------------+-------+-----+--------+-----------+
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView2;
+-------------------------+-------------------------+
| ltz | ntz |
+-------------------------+-------------------------+
| 1970-01-01 00:00:04.001 | 1970-01-01 00:00:01.001 |
+-------------------------+-------------------------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView2;
+-------------------------+-------------------------+
| ltz | ntz |
+-------------------------+-------------------------+
| 1970-01-01 08:00:04.001 | 1970-01-01 00:00:01.001 |
+-------------------------+-------------------------+
Flink SQL> CREATE VIEW MyView3 AS SELECT ltz, CAST(ltz AS TIMESTAMP(3)), CAST(ltz AS STRING), ntz, CAST(ntz AS TIMESTAMP_LTZ(3)) FROM MyView2;
Flink SQL> DESC MyView3;
+-------------------------------+------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+-------------------------------+------------------+-------+-----+--------+-----------+
| ltz | TIMESTAMP_LTZ(3) | true | | | |
| CAST(ltz AS TIMESTAMP(3)) | TIMESTAMP(3) | true | | | |
| CAST(ltz AS STRING) | STRING | true | | | |
| ntz | TIMESTAMP(3) | false | | | |
| CAST(ntz AS TIMESTAMP_LTZ(3)) | TIMESTAMP_LTZ(3) | false | | | |
+-------------------------------+------------------+-------+-----+--------+-----------+
Flink SQL> SELECT * FROM MyView3;
+-------------------------+---------------------------+-------------------------+-------------------------+-------------------------------+
| ltz | CAST(ltz AS TIMESTAMP(3)) | CAST(ltz AS STRING) | ntz | CAST(ntz AS TIMESTAMP_LTZ(3)) |
+-------------------------+---------------------------+-------------------------+-------------------------+-------------------------------+
| 1970-01-01 08:00:04.001 | 1970-01-01 08:00:04.001 | 1970-01-01 08:00:04.001 | 1970-01-01 00:00:01.001 | 1970-01-01 00:00:01.001 |
+-------------------------+---------------------------+-------------------------+-------------------------+-------------------------------+
Time Attribute and Time Zone
Please see Time Attribute for more information about time attribute.
Processing Time and Time Zone
Flink SQL defines process time attribute by function PROCTIME()
, the function return type is TIMESTAMP_LTZ
.
Before Flink 1.13, the function return type of
PROCTIME()
isTIMESTAMP
, and the return value is theTIMESTAMP
in UTC time zone, e.g. the wall-clock shows2021-03-01 12:00:00
at Shanghai, however thePROCTIME()
displays2021-03-01 04:00:00
which is wrong. Flink 1.13 fixes this issue and usesTIMESTAMP_LTZ
type as return type ofPROCTIME()
, users don’t need to deal time zone problems anymore.
The PROCTIME() always represents your local timestamp value, using TIMESTAMP_LTZ type can also support DayLight Saving Time well.
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT PROCTIME();
+-------------------------+
| PROCTIME() |
+-------------------------+
| 2021-04-15 14:48:31.387 |
+-------------------------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT PROCTIME();
+-------------------------+
| PROCTIME() |
+-------------------------+
| 2021-04-15 22:48:31.387 |
+-------------------------+
Flink SQL> CREATE TABLE MyTable1 (
item STRING,
price DOUBLE,
proctime as PROCTIME()
) WITH (
'connector' = 'socket',
'hostname' = '127.0.0.1',
'port' = '9999',
'format' = 'csv'
);
Flink SQL> CREATE VIEW MyView3 AS
SELECT
TUMBLE_START(proctime, INTERVAL '10' MINUTES) AS window_start,
TUMBLE_END(proctime, INTERVAL '10' MINUTES) AS window_end,
TUMBLE_PROCTIME(proctime, INTERVAL '10' MINUTES) as window_proctime,
item,
MAX(price) as max_price
FROM MyTable1
GROUP BY TUMBLE(proctime, INTERVAL '10' MINUTES), item;
Flink SQL> DESC MyView3;
+-----------------+-----------------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+-----------------+-----------------------------+-------+-----+--------+-----------+
| window_start | TIMESTAMP(3) | false | | | |
| window_end | TIMESTAMP(3) | false | | | |
| window_proctime | TIMESTAMP_LTZ(3) *PROCTIME* | false | | | |
| item | STRING | true | | | |
| max_price | DOUBLE | true | | | |
+-----------------+-----------------------------+-------+-----+--------+-----------+
Use the following command to ingest data for MyTable1
in a terminal:
> nc -lk 9999
A,1.1
B,1.2
A,1.8
B,2.5
C,3.8
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView3;
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_procime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:10:00.005 | A | 1.8 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:10:00.007 | B | 2.5 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:10:00.007 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView3;
Returns the different window start, window end and window proctime compared to calculation in UTC timezone.
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_procime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:10:00.005 | A | 1.8 |
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:10:00.007 | B | 2.5 |
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:10:00.007 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Processing time window is non-deterministic, so each run will get different windows and different aggregations. The above example is just for explaining how time zone affects processing time window.
Event Time and Time Zone
Flink supports defining event time attribute on TIMESTAMP column and TIMESTAMP_LTZ column.
Event Time Attribute on TIMESTAMP
If the timestamp data in the source is represented as year-month-day-hour-minute-second, usually a string value without time-zone information, e.g. 2020-04-15 20:13:40.564
, it’s recommended to define the event time attribute as a TIMESTAMP
column:
Flink SQL> CREATE TABLE MyTable2 (
item STRING,
price DOUBLE,
ts TIMESTAMP(3), -- TIMESTAMP data type
WATERMARK FOR ts AS ts - INTERVAL '10' SECOND
) WITH (
'connector' = 'socket',
'hostname' = '127.0.0.1',
'port' = '9999',
'format' = 'csv'
);
Flink SQL> CREATE VIEW MyView4 AS
SELECT
TUMBLE_START(ts, INTERVAL '10' MINUTES) AS window_start,
TUMBLE_END(ts, INTERVAL '10' MINUTES) AS window_end,
TUMBLE_ROWTIME(ts, INTERVAL '10' MINUTES) as window_rowtime,
item,
MAX(price) as max_price
FROM MyTable2
GROUP BY TUMBLE(ts, INTERVAL '10' MINUTES), item;
Flink SQL> DESC MyView4;
+----------------+------------------------+------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+----------------+------------------------+------+-----+--------+-----------+
| window_start | TIMESTAMP(3) | true | | | |
| window_end | TIMESTAMP(3) | true | | | |
| window_rowtime | TIMESTAMP(3) *ROWTIME* | true | | | |
| item | STRING | true | | | |
| max_price | DOUBLE | true | | | |
+----------------+------------------------+------+-----+--------+-----------+
Use the following command to ingest data for MyTable2
in a terminal:
> nc -lk 9999
A,1.1,2021-04-15 14:01:00
B,1.2,2021-04-15 14:02:00
A,1.8,2021-04-15 14:03:00
B,2.5,2021-04-15 14:04:00
C,3.8,2021-04-15 14:05:00
C,3.8,2021-04-15 14:11:00
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView4;
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_rowtime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | A | 1.8 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | B | 2.5 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView4;
Returns the same window start, window end and window rowtime compared to calculation in UTC timezone.
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_rowtime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | A | 1.8 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | B | 2.5 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Event Time Attribute on TIMESTAMP_LTZ
If the timestamp data in the source is represented as a epoch time, usually a long value, e.g. 1618989564564
, it’s recommended to define event time attribute as a TIMESTAMP_LTZ
column.
Flink SQL> CREATE TABLE MyTable3 (
item STRING,
price DOUBLE,
ts BIGINT, -- long time value in epoch milliseconds
ts_ltz AS TO_TIMESTAMP_LTZ(ts, 3),
WATERMARK FOR ts_ltz AS ts_ltz - INTERVAL '10' SECOND
) WITH (
'connector' = 'socket',
'hostname' = '127.0.0.1',
'port' = '9999',
'format' = 'csv'
);
Flink SQL> CREATE VIEW MyView5 AS
SELECT
TUMBLE_START(ts_ltz, INTERVAL '10' MINUTES) AS window_start,
TUMBLE_END(ts_ltz, INTERVAL '10' MINUTES) AS window_end,
TUMBLE_ROWTIME(ts_ltz, INTERVAL '10' MINUTES) as window_rowtime,
item,
MAX(price) as max_price
FROM MyTable3
GROUP BY TUMBLE(ts_ltz, INTERVAL '10' MINUTES), item;
Flink SQL> DESC MyView5;
+----------------+----------------------------+-------+-----+--------+-----------+
| name | type | null | key | extras | watermark |
+----------------+----------------------------+-------+-----+--------+-----------+
| window_start | TIMESTAMP(3) | false | | | |
| window_end | TIMESTAMP(3) | false | | | |
| window_rowtime | TIMESTAMP_LTZ(3) *ROWTIME* | true | | | |
| item | STRING | true | | | |
| max_price | DOUBLE | true | | | |
+----------------+----------------------------+-------+-----+--------+-----------+
The input data of MyTable3 is:
A,1.1,1618495260000 # The corresponding utc timestamp is 2021-04-15 14:01:00
B,1.2,1618495320000 # The corresponding utc timestamp is 2021-04-15 14:02:00
A,1.8,1618495380000 # The corresponding utc timestamp is 2021-04-15 14:03:00
B,2.5,1618495440000 # The corresponding utc timestamp is 2021-04-15 14:04:00
C,3.8,1618495500000 # The corresponding utc timestamp is 2021-04-15 14:05:00
C,3.8,1618495860000 # The corresponding utc timestamp is 2021-04-15 14:11:00
Flink SQL> SET table.local-time-zone=UTC;
Flink SQL> SELECT * FROM MyView5;
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_rowtime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | A | 1.8 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | B | 2.5 |
| 2021-04-15 14:00:00.000 | 2021-04-15 14:10:00.000 | 2021-04-15 14:09:59.999 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Flink SQL> SET table.local-time-zone=Asia/Shanghai;
Flink SQL> SELECT * FROM MyView5;
Returns the different window start, window end and window rowtime compared to calculation in UTC timezone.
+-------------------------+-------------------------+-------------------------+------+-----------+
| window_start | window_end | window_rowtime | item | max_price |
+-------------------------+-------------------------+-------------------------+------+-----------+
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:09:59.999 | A | 1.8 |
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:09:59.999 | B | 2.5 |
| 2021-04-15 22:00:00.000 | 2021-04-15 22:10:00.000 | 2021-04-15 22:09:59.999 | C | 3.8 |
+-------------------------+-------------------------+-------------------------+------+-----------+
Daylight Saving Time Support
Flink SQL supports defining time attributes on TIMESTAMP_LTZ column, base on this, Flink SQL gracefully uses TIMESTAMP and TIMESTAMP_LTZ type in window processing to support the Daylight Saving Time.
Flink use timestamp literal to split the window and assigns window to data according to the epoch time of the each row. It means Flink uses TIMESTAMP
type for window start and window end (e.g. TUMBLE_START
and TUMBLE_END
), uses TIMESTAMP_LTZ
for window time attribute (e.g. TUMBLE_PROCTIME
, TUMBLE_ROWTIME
). Given a example of tumble window, the DaylightTime in Los_Angele starts at time 2021-03-14 02:00:00:
long epoch1 = 1615708800000L; // 2021-03-14 00:00:00
long epoch2 = 1615712400000L; // 2021-03-14 01:00:00
long epoch3 = 1615716000000L; // 2021-03-14 03:00:00, skip one hour (2021-03-14 02:00:00)
long epoch4 = 1615719600000L; // 2021-03-14 04:00:00
The tumble window [2021-03-14 00:00:00, 2021-03-14 00:04:00] will collect 3 hours’ data in Los_angele time zone, but it collect 4 hours’ data in other non-DST time zones, what user to do is only define time attribute on TIMESTAMP_LTZ column.
All windows in Flink like Hop window, Session window, Cumulative window follow this way, and all operations in Flink SQL support TIMESTAMP_LTZ well, thus Flink gracefully supports the Daylight Saving Time zone.
Difference between Batch and Streaming Mode
The following time functions:
- LOCALTIME
- LOCALTIMESTAMP
- CURRENT_DATE
- CURRENT_TIME
- CURRENT_TIMESTAMP
- NOW()
Flink evaluates their values according to execution mode. They are evaluated for each record in streaming mode. But in batch mode, they are evaluated once as the query starts and uses the same result for every row.
The following time functions are evaluated for each record no matter in batch or streaming mode:
- CURRENT_ROW_TIMESTAMP()
- PROCTIME()