Operators
Operators transform one or more DataStreams into a new DataStream. Programs can combine multiple transformations into sophisticated dataflow topologies.
This section gives a description of the basic transformations, the effective physical partitioning after applying those as well as insights into Flink’s operator chaining.
DataStream Transformations
Map
DataStream → DataStream
Takes one element and produces one element. A map function that doubles the values of the input stream:
Java
DataStream<Integer> dataStream = //...
dataStream.map(new MapFunction<Integer, Integer>() {
@Override
public Integer map(Integer value) throws Exception {
return 2 * value;
}
});
Scala
dataStream.map { x => x * 2 }
Python
data_stream = env.from_collection(collection=[1, 2, 3, 4, 5])
data_stream.map(lambda x: 2 * x, output_type=Types.INT())
FlatMap
DataStream → DataStream
Takes one element and produces zero, one, or more elements. A flatmap function that splits sentences to words:
Java
dataStream.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String value, Collector<String> out)
throws Exception {
for(String word: value.split(" ")){
out.collect(word);
}
}
});
Scala
dataStream.flatMap { str => str.split(" ") }
Python
data_stream = env.from_collection(collection=['hello apache flink', 'streaming compute'])
data_stream.flat_map(lambda x: x.split(' '), output_type=Types.STRING())
Filter
DataStream → DataStream
Evaluates a boolean function for each element and retains those for which the function returns true. A filter that filters out zero values:
Java
dataStream.filter(new FilterFunction<Integer>() {
@Override
public boolean filter(Integer value) throws Exception {
return value != 0;
}
});
Scala
dataStream.filter { _ != 0 }
Python
data_stream = env.from_collection(collection=[0, 1, 2, 3, 4, 5])
data_stream.filter(lambda x: x != 0)
KeyBy
DataStream → KeyedStream
Logically partitions a stream into disjoint partitions. All records with the same key are assigned to the same partition. Internally, keyBy() is implemented with hash partitioning. There are different ways to specify keys.
Java
dataStream.keyBy(value -> value.getSomeKey());
dataStream.keyBy(value -> value.f0);
Scala
dataStream.keyBy(_.someKey)
dataStream.keyBy(_._1)
Python
data_stream = env.from_collection(collection=[(1, 'a'), (2, 'a'), (3, 'b')])
data_stream.key_by(lambda x: x[1], key_type=Types.STRING()) // Key by the result of KeySelector
A type cannot be a key if:
- it is a POJO type but does not override the
hashCode()
method and relies on theObject.hashCode()
implementation.- it is an array of any type.
Reduce
KeyedStream → DataStream
A “rolling” reduce on a keyed data stream. Combines the current element with the last reduced value and emits the new value.
A reduce function that creates a stream of partial sums:
Java
keyedStream.reduce(new ReduceFunction<Integer>() {
@Override
public Integer reduce(Integer value1, Integer value2)
throws Exception {
return value1 + value2;
}
});
Scala
keyedStream.reduce { _ + _ }
Python
data_stream = env.from_collection(collection=[(1, 'a'), (2, 'a'), (3, 'a'), (4, 'b')], type_info=Types.TUPLE([Types.INT(), Types.STRING()]))
data_stream.key_by(lambda x: x[1]).reduce(lambda a, b: (a[0] + b[0], b[1]))
Window
KeyedStream → WindowedStream
Windows can be defined on already partitioned KeyedStreams. Windows group the data in each key according to some characteristic (e.g., the data that arrived within the last 5 seconds). See windows for a complete description of windows.
Java
dataStream
.keyBy(value -> value.f0)
.window(TumblingEventTimeWindows.of(Time.seconds(5)));
Scala
dataStream
.keyBy(_._1)
.window(TumblingEventTimeWindows.of(Time.seconds(5)))
Python
This feature is not yet supported in Python
WindowAll
DataStreamStream → AllWindowedStream
Windows can be defined on regular DataStreams. Windows group all the stream events according to some characteristic (e.g., the data that arrived within the last 5 seconds). See windows for a complete description of windows.
This is in many cases a non-parallel transformation. All records will be gathered in one task for the windowAll operator.
Java
dataStream
.windowAll(TumblingEventTimeWindows.of(Time.seconds(5)));
Scala
dataStream
.windowAll(TumblingEventTimeWindows.of(Time.seconds(5)))
Python
This feature is not yet supported in Python
Window Apply
WindowedStream → DataStream
AllWindowedStream → DataStream
Applies a general function to the window as a whole. Below is a function that manually sums the elements of a window.
If you are using a windowAll transformation, you need to use an
AllWindowFunction
instead.
Java
windowedStream.apply(new WindowFunction<Tuple2<String,Integer>, Integer, Tuple, Window>() {
public void apply (Tuple tuple,
Window window,
Iterable<Tuple2<String, Integer>> values,
Collector<Integer> out) throws Exception {
int sum = 0;
for (value t: values) {
sum += t.f1;
}
out.collect (new Integer(sum));
}
});
// applying an AllWindowFunction on non-keyed window stream
allWindowedStream.apply (new AllWindowFunction<Tuple2<String,Integer>, Integer, Window>() {
public void apply (Window window,
Iterable<Tuple2<String, Integer>> values,
Collector<Integer> out) throws Exception {
int sum = 0;
for (value t: values) {
sum += t.f1;
}
out.collect (new Integer(sum));
}
});
Scala
windowedStream.apply { WindowFunction }
// applying an AllWindowFunction on non-keyed window stream
allWindowedStream.apply { AllWindowFunction }
Python
This feature is not yet supported in Python
WindowReduce
WindowedStream → DataStream
Applies a functional reduce function to the window and returns the reduced value.
Java
windowedStream.reduce (new ReduceFunction<Tuple2<String,Integer>>() {
public Tuple2<String, Integer> reduce(Tuple2<String, Integer> value1, Tuple2<String, Integer> value2) throws Exception {
return new Tuple2<String,Integer>(value1.f0, value1.f1 + value2.f1);
}
});
Scala
windowedStream.reduce { _ + _ }
Python
This feature is not yet supported in Python
Union
DataStream* → DataStream
Union of two or more data streams creating a new stream containing all the elements from all the streams. Note: If you union a data stream with itself you will get each element twice in the resulting stream.
Java
dataStream.union(otherStream1, otherStream2, ...);
Scala
dataStream.union(otherStream1, otherStream2, ...);
Python
data_stream.union(otherStream1, otherStream2, ...)
Window Join
DataStream,DataStream → DataStream
Join two data streams on a given key and a common window.
Java
dataStream.join(otherStream)
.where(<key selector>).equalTo(<key selector>)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new JoinFunction () {...});
Scala
dataStream.join(otherStream)
.where(<key selector>).equalTo(<key selector>)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply { ... }
Python
This feature is not yet supported in Python
Interval Join
KeyedStream,KeyedStream → DataStream
Join two elements e1 and e2 of two keyed streams with a common key over a given time interval, so that e1.timestamp + lowerBound <= e2.timestamp <= e1.timestamp + upperBound
.
Java
// this will join the two streams so that
// key1 == key2 && leftTs - 2 < rightTs < leftTs + 2
keyedStream.intervalJoin(otherKeyedStream)
.between(Time.milliseconds(-2), Time.milliseconds(2)) // lower and upper bound
.upperBoundExclusive(true) // optional
.lowerBoundExclusive(true) // optional
.process(new IntervalJoinFunction() {...});
Scala
// this will join the two streams so that
// key1 == key2 && leftTs - 2 < rightTs < leftTs + 2
keyedStream.intervalJoin(otherKeyedStream)
.between(Time.milliseconds(-2), Time.milliseconds(2))
// lower and upper bound
.upperBoundExclusive(true) // optional
.lowerBoundExclusive(true) // optional
.process(new IntervalJoinFunction() {...})
Python
This feature is not yet supported in Python
Window CoGroup
DataStream,DataStream → DataStream
Cogroups two data streams on a given key and a common window.
Java
dataStream.coGroup(otherStream)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply (new CoGroupFunction () {...});
Scala
dataStream.coGroup(otherStream)
.where(0).equalTo(1)
.window(TumblingEventTimeWindows.of(Time.seconds(3)))
.apply {}
Python
This feature is not yet supported in Python
Connect
DataStream,DataStream → ConnectedStream
“Connects” two data streams retaining their types. Connect allowing for shared state between the two streams.
Java
DataStream<Integer> someStream = //...
DataStream<String> otherStream = //...
ConnectedStreams<Integer, String> connectedStreams = someStream.connect(otherStream);
Scala
someStream : DataStream[Int] = ...
otherStream : DataStream[String] = ...
val connectedStreams = someStream.connect(otherStream)
Python
stream_1 = ...
stream_2 = ...
connected_streams = stream_1.connect(stream_2)
CoMap, CoFlatMap
ConnectedStream → DataStream
Similar to map and flatMap on a connected data stream
Java
connectedStreams.map(new CoMapFunction<Integer, String, Boolean>() {
@Override
public Boolean map1(Integer value) {
return true;
}
@Override
public Boolean map2(String value) {
return false;
}
});
connectedStreams.flatMap(new CoFlatMapFunction<Integer, String, String>() {
@Override
public void flatMap1(Integer value, Collector<String> out) {
out.collect(value.toString());
}
@Override
public void flatMap2(String value, Collector<String> out) {
for (String word: value.split(" ")) {
out.collect(word);
}
}
});
Scala
connectedStreams.map(
(_ : Int) => true,
(_ : String) => false
)
connectedStreams.flatMap(
(_ : Int) => true,
(_ : String) => false
)
Python
class MyCoMapFunction(CoMapFunction):
def map1(self, value):
return value[0] + 1, value[1]
def map2(self, value):
return value[0], value[1] + 'flink'
class MyCoFlatMapFunction(CoFlatMapFunction):
def flat_map1(self, value)
for i in range(value[0]):
yield i
def flat_map2(self, value):
yield value[0] + 1
connectedStreams.map(MyCoMapFunction())
connectedStreams.flat_map(MyCoFlatMapFunction())
Iterate
DataStream → IterativeStream → ConnectedStream
Creates a “feedback” loop in the flow, by redirecting the output of one operator to some previous operator. This is especially useful for defining algorithms that continuously update a model. The following code starts with a stream and applies the iteration body continuously. Elements that are greater than 0 are sent back to the feedback channel, and the rest of the elements are forwarded downstream.
Java
IterativeStream<Long> iteration = initialStream.iterate();
DataStream<Long> iterationBody = iteration.map (/*do something*/);
DataStream<Long> feedback = iterationBody.filter(new FilterFunction<Long>(){
@Override
public boolean filter(Long value) throws Exception {
return value > 0;
}
});
iteration.closeWith(feedback);
DataStream<Long> output = iterationBody.filter(new FilterFunction<Long>(){
@Override
public boolean filter(Long value) throws Exception {
return value <= 0;
}
});
Scala
initialStream.iterate {
iteration => {
val iterationBody = iteration.map {/*do something*/}
(iterationBody.filter(_ > 0), iterationBody.filter(_ <= 0))
}
}
Python
This feature is not yet supported in Python
Physical Partitioning
Flink also gives low-level control (if desired) on the exact stream partitioning after a transformation, via the following functions.
Custom Partitioning
DataStream → DataStream
Uses a user-defined Partitioner to select the target task for each element.
Java
dataStream.partitionCustom(partitioner, "someKey");
dataStream.partitionCustom(partitioner, 0);
Scala
dataStream.partitionCustom(partitioner, "someKey")
dataStream.partitionCustom(partitioner, 0)
Python
data_stream = env.from_collection(collection=[(2, 'a'), (2, 'a'), (3, 'b')])
data_stream.partition_custom(lambda key, num_partition: key % partition, lambda x: x[0])
Random Partitioning
DataStream → DataStream
Partitions elements randomly according to a uniform distribution.
Java
dataStream.shuffle();
Scala
dataStream.shuffle()
Python
data_stream.shuffle()
Rescaling
DataStream → DataStream
Partitions elements, round-robin, to a subset of downstream operations. This is useful if you want to have pipelines where you, for example, fan out from each parallel instance of a source to a subset of several mappers to distribute load but don’t want the full rebalance that rebalance() would incur. This would require only local data transfers instead of transferring data over network, depending on other configuration values such as the number of slots of TaskManagers.
The subset of downstream operations to which the upstream operation sends elements depends on the degree of parallelism of both the upstream and downstream operation. For example, if the upstream operation has parallelism 2 and the downstream operation has parallelism 6, then one upstream operation would distribute elements to three downstream operations while the other upstream operation would distribute to the other three downstream operations. If, on the other hand, the downstream operation has parallelism 2 while the upstream operation has parallelism 6 then three upstream operations would distribute to one downstream operation while the other three upstream operations would distribute to the other downstream operation.
In cases where the different parallelisms are not multiples of each other one or several downstream operations will have a differing number of inputs from upstream operations.
Please see this figure for a visualization of the connection pattern in the above example:
Java
dataStream.rescale();
Scala
dataStream.rescale()
Python
data_stream.rescale()
Broadcasting
DataStream → DataStream
Broadcasts elements to every partition.
Java
dataStream.broadcast();
Scala
dataStream.broadcast()
Python
data_stream.broadcast()
Task Chaining and Resource Groups
Chaining two subsequent transformations means co-locating them within the same thread for better performance. Flink by default chains operators if this is possible (e.g., two subsequent map transformations). The API gives fine-grained control over chaining if desired:
Use StreamExecutionEnvironment.disableOperatorChaining()
if you want to disable chaining in the whole job. For more fine grained control, the following functions are available. Note that these functions can only be used right after a DataStream transformation as they refer to the previous transformation. For example, you can use someStream.map(...).startNewChain()
, but you cannot use someStream.startNewChain()
.
A resource group is a slot in Flink, see slots. You can manually isolate operators in separate slots if desired.
Start New Chain
Begin a new chain, starting with this operator. The two mappers will be chained, and filter will not be chained to the first mapper.
Java
someStream.filter(...).map(...).startNewChain().map(...);
Scala
someStream.filter(...).map(...).startNewChain().map(...)
Python
some_stream.filter(...).map(...).start_new_chain().map(...)
Disable Chaining
Do not chain the map operator.
Java
someStream.map(...).disableChaining();
Scala
someStream.map(...).disableChaining()
Python
some_stream.map(...).disable_chaining()
Set Slot Sharing Group
Set the slot sharing group of an operation. Flink will put operations with the same slot sharing group into the same slot while keeping operations that don’t have the slot sharing group in other slots. This can be used to isolate slots. The slot sharing group is inherited from input operations if all input operations are in the same slot sharing group. The name of the default slot sharing group is “default”, operations can explicitly be put into this group by calling slotSharingGroup(“default”).
Java
someStream.filter(...).slotSharingGroup("name");
Scala
someStream.filter(...).slotSharingGroup("name")
Python
some_stream.filter(...).slot_sharing_group("name")