功能介绍
LDA是一种文档主题生成模型。LDA是一种非监督机器学习技术,可以用来识别大规模文档集(document collection)或语料库(corpus)中潜藏的主题信息。它采用了词袋(bag of words)的方法,这种方法将每一篇文档视为一个词频向量,从而将文本信息转化为了易于建模的数字信息。但是词袋方法没有考虑词与词之间的顺序,这简化了问题的复杂性,同时也为模型的改进提供了契机。每一篇文档代表了一些主题所构成的一个概率分布,而每一个主题又代表了很多单词所构成的一个概率分布。
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
默认值 |
topicNum |
主题个数 |
主题个数 |
Integer |
✓ |
|
alpha |
文章的超参 |
文章的超参 |
Double |
|
-1.0 |
beta |
词的超参 |
词的超参 |
Double |
|
-1.0 |
method |
优化方法 |
优化方法, 包含”em”和”online”两种。 |
String |
|
“em” |
onlineLearningOffset |
偏移量 |
偏移量 |
Double |
|
1024.0 |
learningDecay |
衰减率 |
衰减率 |
Double |
|
0.51 |
subsamplingRate |
采样率 |
采样率 |
Double |
|
0.05 |
optimizeDocConcentration |
是否优化alpha |
是否优化alpha |
Boolean |
|
true |
numIter |
迭代次数 |
迭代次数,默认为10 |
Integer |
|
10 |
vocabSize |
字典库大小 |
字典库大小,如果总词数目大于这个值,那个文档频率低的词会被过滤掉。 |
Integer |
|
262144 |
selectedCol |
选中的列名 |
计算列对应的列名 |
String |
✓ |
|
selectedCol |
选中的列名 |
计算列对应的列名 |
String |
✓ |
|
predictionCol |
预测结果列名 |
预测结果列名 |
String |
✓ |
|
predictionDetailCol |
预测详细信息列名 |
预测详细信息列名 |
String |
|
|
reservedCols |
算法保留列名 |
算法保留列 |
String[] |
|
null |
脚本示例
脚本代码
data = np.array(["a b b c c c c c c e e f f f g h k k k", \
"a b b b d e e e h h k", \
"a b b b b c f f f f g g g g g g g g g i j j", \
"a a b d d d g g g g g i i j j j k k k k k k k k k", \
"a a a b c d d d d d d d d d e e e g g j k k k", \
"a a a a b b d d d e e e e f f f f f g h i j j j j", \
"a a b d d d g g g g g i i j j k k k k k k k k k", \
"a b c d d d d d d d d d e e f g g j k k k", \
"a a a a b b b b d d d e e e e f f g h h h", \
"a a b b b b b b b b c c e e e g g i i j j j j j j j k k", \
"a b c d d d d d d d d d f f g g j j j k k k", \
"a a a a b e e e e f f f f f g h h h j"])
df = pd.DataFrame({"doc" : data})
data = dataframeToOperator(df, schemaStr="doc string",op_type="batch")
op = Lda()\
.setSelectedCol("doc")\
.setTopicNum(5)\
.setMethod("online")\
.setSubsamplingRate(1.0)
.setPredictionCol("pred")
pipeline = Pipeline().add(op)
model = pipeline.fit(data)
model.transform(data).collectToDataframe()
脚本运行结果
模型结果
model_id |
model_info |
0 |
{“logPerplexity”:”22.332946259667825”,”betaArray”:”[0.2,0.2,0.2,0.2,0.2]”,”logLikelihood”:”-915.6507966463809”,”method”:”\”online\””,”alphaArray”:”[0.16926092344987234,0.17828690973899627,0.17282213771078062,0.18555794554097874,0.15898463316059516]”,”topicNum”:”5”,”vocabularySize”:”11”} |
1048576 |
{“m”:5,”n”:11,”data”:[6135.5227952852865,7454.918734235136,6569.887273287071,7647.590029783137,7459.37196542985,6689.783286316853,8396.842418256507,7771.120258275389,7497.94247894282,7983.617922597562,7975.470848777338,7114.413879475893,8420.381073064213,6747.377398176922,6959.728145538011,7368.902852508116,7635.5968635989275,6734.522904998126,6792.566021565353,6487.885790775943,8086.932892160501,8443.888239756887,7227.0417299467745,7561.023252667202,6264.97808011349,6964.080980387547,8234.247108608217,8263.190977757107,7872.088651923572,7725.669369347696,7591.453097717432,7733.627117746213,6595.2753568320295,8158.346230399092,7765.777648163369,6456.891859572009,6814.768507000475,6612.17371610521,6506.877213010642,7166.140342089344,7588.370517354863,7645.016947338933,8929.620632942893,6855.855247335312,7263.088264847597,7993.009126022237,7302.794183756114,6074.524636118613,6386.578740892538,8465.84700774072,7242.276290933901,7257.474039179472,7676.72445702261,6733.70550536632,7577.265607033211]} |
2097152 |
{“f0”:”d”,”f1”:0.36772478012531734,”f2”:0} |
3145728 |
{“f0”:”k”,”f1”:0.36772478012531734,”f2”:1} |
4194304 |
{“f0”:”g”,”f1”:0.08004270767353636,”f2”:2} |
5242880 |
{“f0”:”b”,”f1”:0.0,”f2”:3} |
6291456 |
{“f0”:”a”,”f1”:0.0,”f2”:4} |
7340032 |
{“f0”:”e”,”f1”:0.36772478012531734,”f2”:5} |
8388608 |
{“f0”:”j”,”f1”:0.26236426446749106,”f2”:6} |
9437184 |
{“f0”:”f”,”f1”:0.4855078157817008,”f2”:7} |
10485760 |
{“f0”:”c”,”f1”:0.6190392084062235,”f2”:8} |
11534336 |
{“f0”:”h”,”f1”:0.7731898882334817,”f2”:9} |
12582912 |
{“f0”:”i”,”f1”:0.7731898882334817,”f2”:10} |
预测结果
doc |
pred |
a b b b d e e e h h k |
1 |
a a b d d d g g g g g i i j j j k k k k k k k k k |
3 |
a a a a b b d d d e e e e f f f f f g h i j j j j |
3 |
a a b d d d g g g g g i i j j k k k k k k k k k |
1 |
a a a a b b b b d d d e e e e f f g h h h |
3 |
a b c d d d d d d d d d f f g g j j j k k k |
3 |
a b b c c c c c c e e f f f g h k k k |
2 |
a b b b b c f f f f g g g g g g g g g i j j |
0 |
a a a b c d d d d d d d d d e e e g g j k k k |
3 |
a b c d d d d d d d d d e e f g g j k k k |
3 |
a a b b b b b b b b c c e e e g g i i j j j j j j j k k |
3 |
a a a a b e e e e f f f f f g h h h j |
0 |