Description
Normalizer is a Transformer which transforms a dataset of Vector rows, normalizing each Vector to have unit norm. It
takes parameter p, which specifies the p-norm used for normalization. This normalization can help standardize your
input data and improve the behavior of learning algorithms.
Parameters
Name |
Description |
Type |
Required? |
Default Value |
p |
number of degree. |
Double |
|
2.0 |
selectedCol |
Name of the selected column used for processing |
String |
✓ |
|
outputCol |
Name of the output column |
String |
|
null |
reservedCols |
Names of the columns to be retained in the output table |
String[] |
|
null |
Script Example
Script
data = np.array([["1:3,2:4,4:7", 1],\
["0:3,5:5", 3],\
["2:4,4:5", 4]])
df = pd.DataFrame({"vec" : data[:,0], "id" : data[:,1]})
data = dataframeToOperator(df, schemaStr="vec string, id bigint",op_type="batch")
VectorNormalizeBatchOp().setSelectedCol("vec").setOutputCol("vec_norm").linkFrom(data).collectToDataframe()
Result
vec |
id |
vec_norm |
1:3,2:4,4:7 |
1 |
1:0.34874291623145787 2:0.46499055497527714 4:0.813733471206735 |
0:3,5:5 |
3 |
0:0.5144957554275265 5:0.8574929257125441 |
2:4,4:5 |
4 |
2:0.6246950475544243 4:0.7808688094430304 |