Description
The random forest use the bagging to prevent the overfitting.
In the operator, we implement three type of decision tree to increase diversity of the forest.
-
id3
cart
c4.5
-
information
gini
information ratio
mse
Parameters
Name | Description | Type | Required? | Default Value |
---|---|---|---|---|
featureSubsamplingRatio | Ratio of the features used in each tree, in range (0, 1]. | Double | 0.2 | |
numSubsetFeatures | The number of features to consider for splits at each tree node. | Integer | 2147483647 | |
numTrees | Number of decision trees. | Integer | 10 | |
subsamplingRatio | Ratio of the training samples used for learning each decision tree. | Double | 100000.0 | |
predictionCol | Column name of prediction. | String | ✓ | |
predictionDetailCol | Column name of prediction result, it will include detailed info. | String | ||
reservedCols | Names of the columns to be retained in the output table | String[] | null | |
treeType | treeType | String | “avg” | |
maxDepth | depth of the tree | Integer | 2147483647 | |
minSamplesPerLeaf | Minimal number of sample in one leaf. | Integer | 2 | |
createTreeMode | series or parallel | String | “series” | |
maxBins | MAX number of bins for continuous feature | Integer | 128 | |
maxMemoryInMB | max memory usage in tree histogram aggregate. | Integer | 64 | |
featureCols | Names of the feature columns used for training in the input table | String[] | ✓ | |
labelCol | Name of the label column in the input table | String | ✓ | |
categoricalCols | Names of the categorical columns used for training in the input table | String[] | ||
weightCol | Name of the column indicating weight | String | null | |
maxLeaves | max leaves of tree | Integer | 2147483647 | |
minSampleRatioPerChild | Minimal value of: (num of samples in child)/(num of samples in its parent). | Double | 0.0 | |
minInfoGain | minimum info gain when performing split | Double | 0.0 |
Script Example
Code
import numpy as np
import pandas as pd
from pyalink.alink import *
def exampleData():
return np.array([
[1.0, "A", 0, 0, 0],
[2.0, "B", 1, 1, 0],
[3.0, "C", 2, 2, 1],
[4.0, "D", 3, 3, 1]
])
def sourceFrame():
data = exampleData()
return pd.DataFrame({
"f0": data[:, 0],
"f1": data[:, 1],
"f2": data[:, 2],
"f3": data[:, 3],
"label": data[:, 4]
})
def batchSource():
return dataframeToOperator(
sourceFrame(),
schemaStr='''
f0 double,
f1 string,
f2 int,
f3 int,
label int
''',
op_type='batch'
)
def streamSource():
return dataframeToOperator(
sourceFrame(),
schemaStr='''
f0 double,
f1 string,
f2 int,
f3 int,
label int
''',
op_type='stream'
)
(
RandomForestRegressor()
.setPredictionCol('pred')
.setLabelCol('label')
.setFeatureCols(['f0', 'f1', 'f2', 'f3'])
.fit(batchSource())
.transform(batchSource())
.print()
)
(
RandomForestRegressor()
.setPredictionCol('pred')
.setLabelCol('label')
.setFeatureCols(['f0', 'f1', 'f2', 'f3'])
.fit(batchSource())
.transform(streamSource())
.print()
)
StreamOperator.execute()
Result
Batch prediction
f0 f1 f2 f3 label pred
0 1.0 A 0 0 0 0.0
1 2.0 B 1 1 0 0.0
2 3.0 C 2 2 1 1.0
3 4.0 D 3 3 1 1.0
Stream Prediction
f0 f1 f2 f3 label pred
0 2.0 B 1 1 0 0.0
1 4.0 D 3 3 1 1.0
2 1.0 A 0 0 0 0.0
3 3.0 C 2 2 1 1.0