Description
Linear svm train batch operator. it uses hinge loss func by setting LinearModelType = SVM and model name = “linear
SVM”.
Parameters
Name |
Description |
Type |
Required? |
Default Value |
C |
the penalty item parameter. |
Double |
|
1.0 |
optimMethod |
optimization method |
String |
|
null |
withIntercept |
Whether has intercept or not, default is true |
Boolean |
|
true |
maxIter |
Maximum iterations, The default value is 100 |
Integer |
|
100 |
epsilon |
Convergence tolerance for iterative algorithms (>= 0), The default value is 1.0e-06 |
Double |
|
1.0E-6 |
featureCols |
Names of the feature columns used for training in the input table |
String[] |
|
null |
labelCol |
Name of the label column in the input table |
String |
✓ |
|
weightCol |
Name of the column indicating weight |
String |
|
null |
vectorCol |
Name of a vector column |
String |
|
null |
standardization |
Whether standardize training data or not, default is true |
Boolean |
|
true |
Script Example
Script
import numpy as np
import pandas as pd
data = np.array([
[2, 1, 1],
[3, 2, 1],
[4, 3, 2],
[2, 4, 1],
[2, 2, 1],
[4, 3, 2],
[1, 2, 1],
[5, 3, 2]])
df = pd.DataFrame({"f0": data[:, 0],
"f1": data[:, 1],
"label": data[:, 2]})
input = dataframeToOperator(df, schemaStr='f0 int, f1 int, label int', op_type='batch')
dataTest = input
colnames = ["f0","f1"]
svm = LinearSvmTrainBatchOp().setFeatureCols(colnames).setLabelCol("label")
model = input.link(svm)
predictor = LinearSvmPredictBatchOp().setPredictionCol("pred")
predictor.linkFrom(model, dataTest).print()
Result
f0 |
f1 |
label |
pred |
2 |
1 |
1 |
1 |
3 |
2 |
1 |
1 |
4 |
3 |
2 |
2 |
2 |
4 |
1 |
1 |
2 |
2 |
1 |
1 |
4 |
3 |
2 |
2 |
1 |
2 |
1 |
1 |
5 |
3 |
2 |
2 |