Description
Calculate the evaluation data for multi classifiction.
You can either give label column and predResult column or give label column and predDetail column. Once predDetail column is given, the predResult column is ignored.
The labels are sorted in descending order in the output label array and confusion matrix..
Parameters
Name | Description | Type | Required? | Default Value |
---|---|---|---|---|
labelCol | Name of the label column in the input table | String | ✓ | |
predictionCol | Column name of prediction. | String | ✓ | |
predictionDetailCol | Column name of prediction result, it will include detailed info. | String |
Script Example
Code
import numpy as np
import pandas as pd
data = np.array([
["prefix1", "{\"prefix1\": 0.9, \"prefix0\": 0.1}"],
["prefix1", "{\"prefix1\": 0.8, \"prefix0\": 0.2}"],
["prefix1", "{\"prefix1\": 0.7, \"prefix0\": 0.3}"],
["prefix0", "{\"prefix1\": 0.75, \"prefix0\": 0.25}"],
["prefix0", "{\"prefix1\": 0.6, \"prefix0\": 0.4}"]])
df = pd.DataFrame({"label": data[:, 0], "detailInput": data[:, 1]})
inOp = BatchOperator.fromDataframe(df, schemaStr='label string, detailInput string')
metrics = EvalMultiClassBatchOp().setLabelCol("label").setPredictionDetailCol("detailInput").linkFrom(inOp).collectMetrics()
print("Prefix0 accuracy:", metrics.getAccuracy("prefix0"))
print("Prefix1 recall:", metrics.getRecall("prefix1"))
print("Macro Precision:", metrics.getMacroPrecision())
print("Micro Recall:", metrics.getMicroRecall())
print("Weighted Sensitivity:", metrics.getWeightedSensitivity())
inOp = StreamOperator.fromDataframe(df, schemaStr='label string, detailInput string')
EvalMultiClassStreamOp().setLabelCol("label").setPredictionDetailCol("detailInput").setTimeInterval(1).linkFrom(inOp).print()
StreamOperator.execute()
Results
Prefix0 accuracy: 0.6
Prefix1 recall: 1.0
Macro Precision: 0.3
Micro Recall: 0.6
Weighted Sensitivity: 0.6