决策树训练
功能介绍
决策树支持多种树模型
id3,cart,c4.5
支持带样本权重的训练
参数说明
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 默认值 | |
---|---|---|---|---|---|---|
treeType | 模型中树的类型 | 模型中树的类型,平均(gini,entropy均分),gini或者entropy | String | “avg” | ||
maxDepth | 树的深度限制 | 树的深度限制 | Integer | 2147483647 | ||
minSamplesPerLeaf | 叶节点的最小样本个数 | 叶节点的最小样本个数 | Integer | 2 | ||
createTreeMode | 创建树的模式。 | series表示每个单机创建单颗树,parallel表示并行创建单颗树。 | String | “series” | ||
maxBins | 连续特征进行分箱的最大个数 | 连续特征进行分箱的最大个数。 | Integer | 128 | ||
maxMemoryInMB | 树模型中用来加和统计量的最大内存使用数 | 树模型中用来加和统计量的最大内存使用数 | Integer | 64 | ||
featureCols | 特征列名 | 特征列名,必选 | String[] | ✓ | ||
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
categoricalCols | 离散特征列名 | 可选,默认选择String类型和Boolean类型作为离散特征,如果没有则为空 | String[] | |||
weightCol | 权重列名 | 权重列对应的列名 | String | null | ||
maxLeaves | 叶节点的最多个数 | 叶节点的最多个数 | Integer | 2147483647 | ||
minSampleRatioPerChild | 子节点占父节点的最小样本比例 | 子节点占父节点的最小样本比例 | Double | 0.0 | ||
minInfoGain | 分裂的最小增益 | 分裂的最小增益 | Double | 0.0 |
脚本示例
脚本代码
import numpy as np
import pandas as pd
from pyalink.alink import *
def exampleData():
return np.array([
[1.0, "A", 0, 0, 0],
[2.0, "B", 1, 1, 0],
[3.0, "C", 2, 2, 1],
[4.0, "D", 3, 3, 1]
])
def sourceFrame():
data = exampleData()
return pd.DataFrame({
"f0": data[:, 0],
"f1": data[:, 1],
"f2": data[:, 2],
"f3": data[:, 3],
"label": data[:, 4]
})
def batchSource():
return dataframeToOperator(
sourceFrame(),
schemaStr='''
f0 double,
f1 string,
f2 int,
f3 int,
label int
''',
op_type='batch'
)
def streamSource():
return dataframeToOperator(
sourceFrame(),
schemaStr='''
f0 double,
f1 string,
f2 int,
f3 int,
label int
''',
op_type='stream'
)
trainOp = (
DecisionTreeTrainBatchOp()
.setLabelCol('label')
.setFeatureCols(['f0', 'f1', 'f2', 'f3'])
)
predictBatchOp = (
DecisionTreePredictBatchOp()
.setPredictionDetailCol('pred_detail')
.setPredictionCol('pred')
)
(
predictBatchOp
.linkFrom(
batchSource().link(trainOp),
batchSource()
)
.print()
)
predictStreamOp = (
DecisionTreePredictStreamOp(
batchSource().link(trainOp)
)
.setPredictionDetailCol('pred_detail')
.setPredictionCol('pred')
)
(
predictStreamOp
.linkFrom(
streamSource()
)
.print()
)
StreamOperator.execute()
脚本结果
批预测结果
f0 f1 f2 f3 label pred pred_detail
0 1.0 A 0 0 0 0 {"0":1.0,"1":0.0}
1 2.0 B 1 1 0 0 {"0":1.0,"1":0.0}
2 3.0 C 2 2 1 1 {"0":0.0,"1":1.0}
3 4.0 D 3 3 1 1 {"0":0.0,"1":1.0}
流预测结果
f0 f1 f2 f3 label pred pred_detail
0 1.0 A 0 0 0 0 {"0":1.0,"1":0.0}
1 3.0 C 2 2 1 1 {"0":0.0,"1":1.0}
2 2.0 B 1 1 0 0 {"0":1.0,"1":0.0}
3 4.0 D 3 3 1 1 {"0":0.0,"1":1.0}